skip to main content

STOCK PRICE PREDICTION IN INDONESIA USING EXTREME GRADIENT BOOSTING OPTIMIZED BY ADAPTIVE PARTICLE SWARM OPTIMIZATION

Alya Mirza Safira  -  Data Science Study Program, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia, Indonesia
*Trimono Trimono scopus  -  Department of Data Science, Faculty of Computer Science, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya, Indonesia
Kartika Maulida Hindrayani  -  Data Science Study Program, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia, Indonesia
Open Access Copyright (c) 2025 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
High volatility is a major problem in generating accurate predictions of stock prices. It also causes unstable predictions and increases the loss risk. Therefore, an adaptive prediction model that is able to adjust to dynamic data pattern changes is needed. This study aims to address these issues by developing an Extreme Gradient Boosting (XGBoost) model optimized using Adaptive Particle Swarm Optimization (APSO). XGBoost was chosen for its ability to handle nonlinear relationships and minimize overfitting, while APSO serves to adaptively adjust parameters to obtain the optimal combination of hyperparameters. The novelty of this research lies in the application of XGBoost-APSO integration in the context of stock price prediction in the Indonesian capital market, which is characterized by high volatility. The study was conducted using daily closing price data of PT Aneka Tambang Tbk (ANTM) shares from November 2020 to May 2025 to predict prices seven days ahead. The results show that the XGBoost-APSO model provides the best performance with a MAPE value of 0.2%, superior to XGBoost-PSO (2.58%) and standard XGBoost (2.91%). This approach effectively improves prediction accuracy and supports quick and accurate investment decision making, while contributing to the development of intelligent prediction systems in the Indonesian capital market.
Fulltext View|Download
Keywords: Stock Price; Fluctuation; Prediction; XGBoost; APSO

Article Metrics:

  1. Ardana, A. (2023). Performance Analysis of XGBoost Algorithm to Determine the Most Optimal Parameters and Features in Predicting Stock Price Movement. Telematika, 20(1), 91. https://doi.org/10.31315/telematika.v20i1.9329
  2. Chauhan, D., Shivani, & Suganthan, P. N. (2025). Learning Strategies in Particle Swarm Optimizer: A Critical Review and Performance Analysis. 1–53. https://arxiv.org/pdf/2504.11812.pdf
  3. Chen, T., & Guestrin, C. (2020). XGBoost: A Scalable Tree Boosting System. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  4. Damaliana, A. T. (2024). Forecasting The Occupancy Rate of Star Hotels In Bali. 12(1), 24–33. https://doi.org/10.14710/JSUNIMUS
  5. Djaneye-Boundjou, O., Ordonez, R., & Gazi, V. (2020). Stable Adaptive Particle Swarm Optimization. International Conference on Control, Automation and Systems, 39(October), 440–445. https://doi.org/10.1109/ICCAS.2013.6703971
  6. Fahrudin, T. M., Riyantoko, P. A., Hindrayani, K. M., & Diyasa, I. G. S. M. (2021). Daily Forecasting for Antam’s Certified Gold Bullion Prices in 2018-2020 using Polynomial Regression and Double Exponential Smoothing. Journal of International Conference Proceedings, 3(4), 45–53. https://doi.org/10.32535/jicp.v3i4.1009
  7. Fajriyah, R., Isnandar, H. A., & Arifuddin, A. (2024). Gene Markers Identification of Acute Myocardial Infarction Disease Based on Genomic Profiling Through Extreme Gradient Boosting (XGBoost). Media Statistika, 17(1), 69–80. https://doi.org/10.14710/medstat.17.1.69-80
  8. Faqih, A., & Sugihartono, T. (2025). Perbandingan Algoritma XGBoost dan LSTM dalam Prediksi Harga Saham Tesla Menggunakan Data Tahun 2025. Jurnal Pendidikan Dan Teknologi Indonesia, 5(6), 1563–1573. https://doi.org/10.52436/1.jpti.836
  9. Hossen, M. S., Rabbi, F., & Rahman, M. M. (2020). Adaptive Particle Swarm Optimization (APSO) for Multimodal Function Optimization. International Journal of Engineering and Technology, 1(3), 98–103
  10. Islam, S. F. N., Sholahuddin, A., & Abdullah, A. S. (2021). Extreme Gradient Boosting (XGBoost) Method in Making Forecasting Application and Analysis of USD Exchange Rates Against Rupiah. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012016
  11. Jange, B. (2022). Prediksi Harga Saham Bank BCA Menggunakan XGBoost. Arbitrase: Journal of Economics and Accounting, 3(2), 231–237. https://doi.org/10.47065/arbitrase.v3i2.495
  12. Profil PT Aneka Tambang Tbk. (2024). Profil PT Antam Tbk. https://www.antam.com/id/about-us/profile
  13. PT Bursa Efek Indonesia. (2025). IDX Bell Laporan Tahunan Rapat Umum pemegang Saham Tahunan 2025 dan 17 Juta Investor Pasar Modal Indonesia. https://www.idx.co.id/id/tentang-bei/idxbell-newsletter/
  14. Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., & Liu, P. (2021). XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring. Mathematical Problems in Engineering, 2021(5), 1-18. https://doi.org/10.1155/2021/6655510
  15. Sharma, P., & Jain, M. K. (2023). Stock Market Trends Analysis using Extreme Gradient Boosting (XGBoost). Proceedings - 4th IEEE 2023 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2023, February, 317–322. https://doi.org/10.1109/ICCCIS60361.2023.10425722
  16. Srivastava, V., Dwivedi, V. K., & Singh, A. K. (2023). Cryptocurrency Price Prediction Using Enhanced PSO with Extreme Gradient Boosting Algorithm. Cybernetics and Information Technologies, 23(2), 170–187. https://doi.org/10.2478/cait-2023-0020
  17. Syafei, R. M., & Efrilianda, D. A. (2023). Machine Learning Model Using Extreme Gradient Boosting (XGBoost) Feature Importance and Light Gradient Boosting Machine (LightGBM) to Improve Accurate Prediction of Bankruptcy. Recursive Journal of Informatics, 1(2), 64–72. https://doi.org/10.15294/rji.v1i2.71229
  18. Trimono, T., Diyasa, I. G. S. M., Fauzi, A., & Idhom, M. (2021). Value at Risk with Bootstrap Historical Simulation Approach for Prediction of Cryptocurrency Investment Risk. Proceedings - 2021 IEEE 7th Information Technology International Seminar, ITIS 2021. https://doi.org/10.1109/ITIS53497.2021.9791657
  19. Wu, K., Chai, Y., Zhang, X., & Zhao, X. (2022). Research on Power Price Forecasting Based on PSO-XGBoost. Electronics (Switzerland), 11(22). https://doi.org/10.3390/electronics11223763
  20. Xiao, Y., Yan, W., Wang, R., Jiang, Z., & Liu, Y. (2021). Research on Blank Optimization Design Based on Low-Carbon and Low-Cost Blank Process Route Optimization Model. Sustainability (Switzerland), 13(4), 1–21. https://doi.org/10.3390/su13041929
  21. Zheng, D., Qin, C., & Liu, P. (2021). Adaptive Particle Swarm Optimization Algorithm Ensemble Model Applied to Classification of Unbalanced Data. Scientific Programming, 2021, 1–13. https://doi.org/10.1155/2021/7589756

Last update:

No citation recorded.

Last update: 2025-10-18 14:10:51

No citation recorded.