skip to main content

POTENSI VERTICAL GREENERY SYSTEMS DI DALAM MENDUKUNG PENGHEMATAN ENERGI PADA BANGUNAN

*Ratih Widiastuti orcid scopus publons  -  System Engineering, faculty of integrated technology, Universiti Brunei Darussalam, Brunei Darussalam

Citation Format:
Abstract
Review studi ini mengumpulkan dan merangkum literature terkait vertical greenery systems sebagai elemen selubung bangunan yang mendukung penghematan energi pada bangunan. Dengan adanya critical review ini beberapa aspek utama harus diperhatikan ketika melakukan studi terkait vertical greenery systems, pengaruh system struktur, kondisi iklim setempat, dan jenis tanaman yang digunakan. Kesimpulan utama yang didapatkan dari critical review ini adalah berdasarkan sistem konstruksinya, vertical greenery systems dibagi menjadi green façades dan green walls. Review terhadap pengaruh iklim menunjukkan bahwa studi vertical greenery systems hanya terkonsentrasi di Eropa dan Asia. Diketahui pemilihan jenis tanaman juga harus disesuaikan dengan kondisi iklim setempat. Hal tersebut terkait dengan pengaruh ketebalan lapisan daun dan luas area dedaunan. Studi juga membuktikan bahwa vertical greenery systems memiliki kontribusi di dalam penurunan konsumsi energi pada bangunan, khususnya untuk pendinginan. Empat aspek utama yang menjadi kajian adalah pembayangan, pendinginan, insulasi, dan penahan angin.
Fulltext View|Download
Keywords: efek insulasi; efek pembayangan; efek penahan angin; efek pendinginan; green façades; green walls; selubung bangunan; vertical greenery systems

Article Metrics:

  1. Building greener. (2007). Guidance on the use of green roofs, green walls and complementary features on buildings
  2. Chen, Q., Li, B., & Liu, X. (2013). An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, 61, 298–307. https://doi.org/10.1016/j.enbuild.2013.02.030
  3. Cheng, C. Y., Cheung, K. K. S., & Chu, L. M. (2010). Thermal performance of a vegetated cladding system on facade walls. Building and Environment, 45(8), 1779–1787. https://doi.org/10.1016/j.buildenv.2010.02.005
  4. Dunnett, N., Kingsbury, N. (2004). Planting Green Roofs and Living Walls. Timber press
  5. Dunnett, N., & Kingsbury, N. (2008a). Planting green roofs and living walls. Timber press Portland, OR
  6. Dunnett, N., & Kingsbury, N. (2008b). Planting Green Roofs and Living Walls. In Journal of Environmental Quality (Vol. 37, Issue 6). https://doi.org/10.2134/jeq2008.0016br
  7. Eumorfopoulou, E. A., & Kontoleon, K. J. (2009). Experimental approach to the contribution of plant-covered walls to the thermal behaviour of building envelopes. Building and Environment, 44(5), 1024–1038. https://doi.org/10.1016/j.buildenv.2008.07.004
  8. H. F. Di, D. N. W. (1999). Cooling effect of Ivy on a wall. Experimental Heat Transfer, 12(3), 235–245. https://doi.org/10.1080/089161599269708
  9. Hien, N., Yong, A., Tan, K., Yok, P., & Chung, N. (2009). Energy simulation of vertical greenery systems. 41, 1401–1408. https://doi.org/10.1016/j.enbuild.2009.08.010
  10. Hoyano, A. (1988). Climatological uses of plants for solar control and the effects on the thermal environment of a building. Energy and Buildings, 11(1–3), 181–199. https://doi.org/10.1016/0378-7788(88)90035-7
  11. Hunter, A. M., Williams, N. S. G., Rayner, J. P., Aye, L., Hes, D., & Livesley, S. J. (2014). Quantifying the thermal performance of green façades: A critical review. Ecological Engineering, 63, 102–113. https://doi.org/10.1016/j.ecoleng.2013.12.021
  12. Ip, K., Lam, M., & Miller, A. (2010). Shading performance of a vertical deciduous climbing plant canopy. Building and Environment, 45(1), 81–88. https://doi.org/10.1016/j.buildenv.2009.05.003
  13. Jim, C. Y., & He, H. (2011). Estimating heat flux transmission of vertical greenery ecosystem. Ecological Engineering, 37(8), 1112–1122. https://doi.org/10.1016/j.ecoleng.2011.02.005
  14. Köhler, M. (2008). Green facades-a view back and some visions. Urban Ecosystems, 11(4), 423–436. https://doi.org/10.1007/s11252-008-0063-x
  15. Kontoleon, K. J., & Eumorfopoulou, E. A. (2010). The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Building and Environment, 45(5), 1287–1303. https://doi.org/10.1016/j.buildenv.2009.11.013
  16. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  17. Koyama, T., Yoshinaga, M., Hayashi, H., Maeda, K. ichiro, & Yamauchi, A. (2013). Identification of key plant traits contributing to the cooling effects ofgreen façades using freestanding walls. Building and Environment, 66, 96–103. https://doi.org/10.1016/j.buildenv.2013.04.020
  18. Lee, L. S. H., & Jim, C. Y. (2017). Subtropical summer thermal effects of wirerope climber green walls with different air-gap depths. Building and Environment, 126, 1–12. https://doi.org/10.1016/j.buildenv.2017.09.021
  19. Living wall systems. (n.d.). Retrieved July 17, 2020, from https://www.pinterest.com/pin/372250725419680988/?nic_v2=1a1tgJN3g
  20. Manso, M., & Castro-gomes, J. (2015). Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, 41, 863–871. https://doi.org/10.1016/j.rser.2014.07.203
  21. Manso, M., & Castro-Gomes, J. (2015). Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, 41, 863–871. https://doi.org/10.1016/j.rser.2014.07.203
  22. Mazzali, U., Peron, F., Romagnoni, P., Pulselli, R. M., & Bastianoni, S. (2013). Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment, 64, 57–66. https://doi.org/10.1016/j.buildenv.2013.03.005
  23. Ottelé, M. (2011). The green building envelope
  24. Ottelé, M., Perini, K., Fraaij, A. L. A., Haas, E. M., & Raiteri, R. (2011). Comparative life cycle analysis for green façades and living wall systems. Energy and Buildings, 43(12), 3419–3429. https://doi.org/10.1016/j.enbuild.2011.09.010
  25. Pérez, G., Rincón, L., Vila, A., González, J. M., & Cabeza, L. F. (2011). Behaviour of green facades in Mediterranean Continental climate. Energy Conversion and Management, 52(4), 1861–1867. https://doi.org/10.1016/j.enconman.2010.11.008
  26. Pérez, Gabriel, Rincón, L., Vila, A., González, J. M., & Cabeza, L. F. (2011). Green vertical systems for buildings as passive systems for energy savings. Applied Energy, 88(12), 4854–4859. https://doi.org/10.1016/j.apenergy.2011.06.032
  27. Perini, K., Ottelé, M., Fraaij, A. L. A., Haas, E. M., & Raiteri, R. (2011). Vertical greening systems and the effect on air flow and temperature on the building envelope. Building and Environment, 46(11), 2287–2294. https://doi.org/10.1016/j.buildenv.2011.05.009
  28. Perini, K., Ottelé, M., Haas, E. M., & Raiteri, R. (2013). Vertical greening systems, a process tree for green façades and living walls. Urban Ecosystems, 16(2), 265–277. https://doi.org/10.1007/s11252-012-0262-3
  29. Schmidt M. (2006). Energy and water, a decentralized approach to an integrated sustainable urban development
  30. Siew, C. C., Che-Ani, A. I., Tawil, N. M., Abdullah, N. A. G., & Mohd-Tahir, M. (2011). Classification of natural ventilation strategies in optimizing energy consumption in Malaysian office buildings. Procedia Engineering, 20, 363–371. https://doi.org/10.1016/j.proeng.2011.11.178
  31. Stec, W. J., Van Paassen, A. H. C., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings, 37(5), 419–427. https://doi.org/10.1016/j.enbuild.2004.08.008
  32. Sternberg, T., Viles, H., & Cathersides, A. (2011). Evaluating the role of ivy (Hedera helix) in moderating wall surface microclimates and contributing to the bioprotection of historic buildings. Building and Environment, 46(2), 293–297. https://doi.org/10.1016/j.buildenv.2010.07.017
  33. Šuklje, T. Ž., Medved, S., & Arkar, C. (2013). An Experimental Study on a Microclimatic Layer of a Bionic Façade Inspired by Vertical Greenery. Journal of Bionic Engineering, 10(2), 177–185. https://doi.org/10.1016/S1672-6529(13)60213-9
  34. Susorova, I., Angulo, M., Bahrami, P., & Brent Stephens. (2013). A model of vegetated exterior facades for evaluation of wall thermal performance. Building and Environment, 67, 1–13. https://doi.org/10.1016/j.buildenv.2013.04.027
  35. Wong, N. H., Kwang Tan, A. Y., Chen, Y., Sekar, K., Tan, P. Y., Chan, D., Chiang, K., & Wong, N. C. (2010). Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 45(3), 663–672. https://doi.org/10.1016/j.buildenv.2009.08.005
  36. Yeh, Y.-P. (2015). Green Wall- The Creative Solution in Response to the Urban Heat Island Effect. 9, 8. http://www.nodai.ac.jp/cip/iss/english/9th_iss/fullpaper/3-1-4nchu-yupengyeh.pdf

Last update:

  1. Multi-Criteria Analysis and Design Ideas of Green Façade Systems as Eco-Friendly Architectural Solutions

    Patrycja Kamińska, Hanna Michalak. Civil and Environmental Engineering Reports, 33 (4), 2024. doi: 10.59440/ceer/178257

Last update: 2025-01-22 15:07:10

No citation recorded.