skip to main content

Economic Spatial Patterns and Human Development Index Districts and Cities in Five Southern Sumatera Provinces

*Ahmad Dhea Pratama  -  Faculty of Economics and Business, University of Lampung, Bandar Lampung, Indonesia
Ukhti Ciptawaty  -  Faculty of Economics and Business, University of Lampung, Bandar Lampung, Indonesia

Citation Format:
Abstract
The Spatial linkages between regions are an important part of a regional economy as an analysis of relations and interactions between regions. Regional economic studies tend to focus only on the independence of a region so that it does not consider the spatial effects that occur between one region and another. This study focuses on looking at spatial autocorrelation which will produce spatial patterns and spatial linkages between regions of the gross regional domestic product and the human development index, with the findings of seeing spatial interactions and patterns of similarities or differences in the formation of the two variables between regions. The research area focuses on 60 districts and cities in 5 provinces of Southern Sumatera with the 2015-2019 research year, the analysis method uses Geographic Information Systems with Geoda software, the results of the calculations will produce Moran’s I, LISA Significance and Clustered maps.  The outcomes show that there has been a spatial relationship as certain autocorrelation of GRDP and HDI, the formation of the economy and human capital has a spatial relationship, results of Moran'I show that the positive value of the two variables has a group pattern and has a level of formation of GRDP and HDI with the same characteristics, moran scatterplot shows the similarity with the resulting region divided into 4 quadrants. The LISA cluster map and the LISA marking are the similarities in the findings of the GRDP and HDI results, but both variables have no findings of Low-high patterns.
Fulltext
Keywords: GRDP, HDI, Spatial Analysis

Article Metrics:

  1. Anselin, L. (1995). Local indicators of spatial organization -LISA. Geographical Analysis, 27(2), 93–115
  2. Anselin, L. (1998). Spatial Econometrics: Methods And Models by L. Anselin. Journal Spatial Econometric, 7(2), 1–16
  3. Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89(1), 3–25. https://doi.org/10.1111/j.1435-5957.2010.00279.x
  4. ANWAR, A. (2017). Ketimpangan Spasial Pembangunan Ekonomi Dan Modal Manusia Di Pulau Jawa: Pendekatan Explatory Spatial Data Analysis. Ajie Asian Journal of Innovation and Entrepreneurship, 2(2), 90–109. https://doi.org/10.20885/ajie.vol2.iss2.art2
  5. Edward L. Glaeser Bruce I. (2013). THE SOCIAL MULTIPLIER. Journal of Chemical Information and Modeling, 01(01), 1689–1699
  6. Hirschman, A. (1984). A Dissenter´s Conffesion: “The Strategy of Economic Development” Revisited. Pioneers in Development, 1(1), 85–111. http://www.rrojasdatabank.info/pioneers4.pdf
  7. Jay, L., Wiley, Jossey-Bass, Pfeiffer, Lasser, & Capstone. (2001). Statiscal Analysis with ArcView Gis (I. John Wiley & Sons (ed.)). John Wiley & Sons, Inc. All rights reserved.Published simultaneously in Canada
  8. Krugman, P. (1999). The role of geography in development. International Regional Science Review, 22(2), 142–161. https://doi.org/10.1177/016001799761012307
  9. Kuncoro, M. (2004). Pertumbuhan Ekonomi dan Ketimpangan Antar Wilayah dalam buku Otonomi Dan Pembangunan Daerah. Penerbit Erlangga. Jakarta
  10. Nisa, E. K. (2017). Identifikasi Spatial Pattern Dan Spatial Autocorrelation Pada Indeks Pembangunan Manusia Provinsi Papua Barat Tahun 2012. Jurnal At-Taqaddum, 9(November 2017), 37–39
  11. Novitasari, D. A. (2015). Spatial Pattern Analysis Dan Spatial Autocorrelation Produk Domestik Regional Bruto (Pdrb) Sektor Industri Untuk Menggambarkan Perekonomian Penduduk Di Jawa Timur. Jurnal Ekbis, 13(1), 9. https://doi.org/10.30736/ekbis.v13i1.113
  12. Novitasari, D., & Khikmah, L. (2019). Penerapan Model Regresi Spasial Pada Indeks Pembangunan Manusia (IPM) Di Jawa Tengah Tahun 2017. STATISTIKA Journal of Theoretical Statistics and Its Applications, 19(2), 123–134. https://doi.org/10.29313/jstat.v19i2.5068
  13. Perroux, Francois. (1950). ‘Economic Space: Theory and Applications’. Quarterly Journal of Economics, Vol.64(1): 89-104
  14. Resende, G. M., de Carvalho, A. X. Y., Sakowski, P. A. M., & Cravo, T. A. (2016). Evaluating multiple spatial dimensions of economic growth in Brazil using spatial panel data models. Annals of Regional Science, 56(1), 1–31. https://doi.org/10.1007/s00168-015-0706-9
  15. Tarigan, Robinson. (2005). Ekonomi Regional. Teori dan Aplikasi. Bumi Aksara. Jakarta
  16. Todaro, M.P. dan Smith Stephen. C. (2003). Pembangunan Ekonomi di Dunia Ketiga. Edisi kedelapan. Jilid 2. Jakarta: Erlangg
  17. Zhou, H., Qu, S., Yang, X., & Yuan, Q. (2020). Regional Credit, Technological Innovation, and Economic Growth in China: A Spatial Panel Analysis. Discrete Dynamics in Nature and Society, 2020. https://doi.org/10.1155/2020/1738279
  18. Zhukov, Y. M. (2010). Applied Spatial Statistics in R , Section 4 Spatial Point Processes Spatial Data and Basic Visualization in R. In Statistics

Last update:

No citation recorded.

Last update:

No citation recorded.