Analysis of the Effect of Biodiesel B20 and B100 on the Degradation of Viscosity and Total Base Number of Lubricating Oil in Diesel Engines with Long-Term Operation Using ASTM D2896 and ASTM D445-06 Methods

Analisis Pengaruh Biodiesel B20 Dan B100 Terhadap Degradasi Viskositas Dan Total Base Number Minyak Pelumas Pada Mesin Diesel Yang Beroperasi Dalam Jangka Panjang Dengan Metode ASTM D2896 Dan ASTM D445-06

*Jayan Sentanuhady  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
Akmal Irfan Majid  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
W. Prashida  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
W. Saputro  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
N. P. Gunawan  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
T. Y. Raditya  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
Muhammad Akhsin Muflikhun  -  Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia
Received: 28 Aug 2020; Revised: 25 Dec 2020; Accepted: 28 Dec 2020; Published: 30 Dec 2020; Available online: 31 Dec 2020.
Open Access Copyright (c) 2020 TEKNIK

Citation Format:
Abstract
Based on its characteristics, biodiesel has a higher density, viscosity, and acidity level than diesel fuel, so it has a disadvantages in terms of lubricants especially in the long run. The impact, it can decrease the kinematic viscosity of the lubricant, a decrease in the total base number, and the impact by decreased of the engine performance. This research aims to determine the characteristics of lubricants from the use of biodiesel (B20 and B100) related to the kinematic viscosity of lubricants and Total Base Number (TBN). The testing method were used ASTM D2896-15 and ASTM D445-06 standard. The study used two units Kubota RD 65 DI-NB diesel engines with a cylinder volume of 376 cc. The rotary speed of the machine was keep constant at 2200 rpm and were operated for 300 hours non-stop. Moreover, the sampled was carried out every multiple of 100 hours. Based on the research results, the quality of lubricants with B100 fuel is no better than lubricants with B20 fuel. B100-fueled lubricants have kinematic viscosity values at temperatures of 40 °C and 100 °C and has lower TBN values than B20-fueled lubricants.
Keywords: biodiesel; lubricant; kinematic viscosity; total base number; B100; B20
Funding: Departemen Teknik Mesin dan Industri, Universitas Gadjah Mada

Article Metrics:

  1. Afriyanti, D., Kroeze, C., & Saad, A. (2016). Indonesia palm oil production without deforestation and peat conversion by 2050. Science of the Total Environment, 557–558, 562–570. https://doi.org/10.1016/j.scitotenv.2016.03.032
  2. Ayompe, L. M., Schaafsma, M., & Egoh, B. N. (2021). Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. Journal of Cleaner Production, 278, 123914. https://doi.org/10.1016/j.jclepro.2020.123914
  3. Datta, A., & Mandal, B. K. (2016). A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable and Sustainable Energy Reviews, 57, 799–821. https://doi.org/10.1016/j.rser.2015.12.170
  4. Dere, C., & Deniz, C. (2020). Effect analysis on energy efficiency enhancement of controlled cylinder liner temperatures in marine diesel engines with model based approach. Energy Conversion and Management, 220(June), 113015. https://doi.org/10.1016/j.enconman.2020.113015
  5. Dhar, A., & Agarwal, A. K. (2014). Effect of Karanja biodiesel blend on engine wear in a diesel engine. Fuel, 134, 81–89
  6. Dharma, S., Ong, H. C., Masjuki, H. H., Sebayang, A. H., & Silitonga, A. S. (2016). An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines. Energy Conversion and Management, 128, 66–81. https://doi.org/10.1016/j.enconman.2016.08.072
  7. Dugmore, T. I. J., & Stark, M. S. (2014). Effect of biodiesel on the autoxidation of lubricant base fluids. Fuel, 124, 91–96. https://doi.org/10.1016/j.fuel.2014.01.039
  8. Elkelawy, M., Bastawissi, H. A. E., Esmaeil, K. K., Radwan, A. M., Panchal, H., Sadasivuni, K. K., Suresh, M., & Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266(December 2019), 117072. https://doi.org/10.1016/j.fuel.2020.117072
  9. Gopal, K. N., & Raj, R. T. K. (2016). Effect of pongamia oil methyl ester--diesel blend on lubricating oil degradation of di compression ignition engine. Fuel, 165, 105–114
  10. Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., & Fattah, I. M. R. (2015). Oil filter modification for biodiesel--fueled engine: A pathway to lubricant sustainability and exhaust emissions reduction. Energy Conversion and Management, 91, 168–175
  11. Hakim, D. B., Hadianto, A., Giyanto, Hutaria, T., & Amaliah, S. (2020). The production efficiency of herbicides in palm oil plantation in Sumatera and Kalimantan. IOP Conference Series: Earth and Environmental Science, 468(1), 0–10. https://doi.org/10.1088/1755-1315/468/1/012054
  12. Hammershøi, P. S., Jensen, A. D., & Janssens, T. V. W. (2018). Impact of SO2-poisoning over the lifetime of a Cu-CHA catalyst for NH3-SCR. Applied Catalysis B: Environmental, 238(June), 104–110. https://doi.org/10.1016/j.apcatb.2018.06.039
  13. Högström, Å. (2018). Sulfur poisoning and regeneration of copper zeolites for NH3-SCR. In Graduate Theses and Dissertations, Luleå University of Technology
  14. Li, T., Ma, X., Lu, X., Wang, C., Jiao, B., Xu, H., & Zou, D. (2019). Lubrication analysis for the piston ring of a two-stroke marine diesel engine taking account of the oil supply. International Journal of Engine Research, 145. https://doi.org/10.1177/1468087419872113
  15. Mujtaba, M. A., Masjuki, H. H., Kalam, M. A., Noor, F., Farooq, M., Ong, H. C., Gul, M., Soudagar, M. E. M., Bashir, S., Fattah, I. M. R., & Razzaq, L. (2020). Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies, 13(13). https://doi.org/10.3390/en13133375
  16. Prabhu, A., & Venkata Ramanan, M. (2020). Detailed analysis on injection timing retardation and simultaneous technology in a biodiesel-powered compression ignition engine. International Journal of Ambient Energy, 41(12), 1437–1440. https://doi.org/10.1080/01430750.2018.1501749
  17. Raksodewanto, A. A., Abrori, M., & Hariana, H. (2018). Penggunaan biodiesel b30 untuk sektor pembangkit listrik dalam rangka penghematan devisa. Prosiding Seminar Nasional Sains dan Teknologi. Fakultas Teknik Universitas Muhammadiyah Jakarta
  18. Sharma, S., Kundu, A., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Sustainable environmental management and related biofuel technologies. Journal of Environmental Management, 273(April), 111096. https://doi.org/10.1016/j.jenvman.2020.111096
  19. Singh, P., Chauhan, S. R., Goel, V., & Gupta, A. K. (2019). Impact of binary biofuel blend on lubricating oil degradation in a compression ignition engine. Journal of Energy Resources Technology, Transactions of the ASME, 141(3). https://doi.org/10.1115/1.4041411
  20. Singh, P., Goel, V., & Chauhan, S. R. (2017). Impact of dual biofuel approach on engine oil dilution in CI engines. Fuel, 207, 680–689. https://doi.org/10.1016/j.fuel.2017.06.110
  21. Sitepu, M. H., Matondang, A. R., & Sembiring, M. T. (2020). Sustainability assessment in crude palm oil production: A review. IOP Conference Series: Materials Science and Engineering, 725(1). https://doi.org/10.1088/1757-899X/725/1/012074
  22. Xiao, H., Dou, C., Shi, H., Ge, J., & Cai, L. (2018). Influence of sulfur-containing sodium salt poisoned V2O5–WO3/TiO2 catalysts on SO2–SO3 conversion and NO removal. Catalysts, 8(11), 1–16. https://doi.org/10.3390/catal8110541
  23. Xie, W. Q., Gong, Y. X., & Yu, K. X. (2017). A rapid method for the quantitative analysis of total acid number in biodiesel based on headspace GC technique. Fuel, 210(August), 236–240. https://doi.org/10.1016/j.fuel.2017.08.070

Last update: 2021-03-05 05:59:45

No citation recorded.

Last update: 2021-03-05 05:59:47

No citation recorded.