skip to main content

Analisis Kematangan Batuan Induk Hidrokarbon di Formasi Naintupo, Sub-Cekungan Tarakan, Provinsi Kalimantan Utara

*FX Anjar Tri Laksono orcid scopus  -  Teknik Geologi, Fakultas Teknik, Universitas Jenderal Soedirman, Indonesia
Fendy Kusdiantoro  -  Divisi Eksplorasi, Medco E&P Indonesia, Indonesia
János Kovács  -  Department of Geology and Meteorology, Faculty of Sciences, University of Pecs, Hungary
Widhiatmoko Herry Purnomo  -  Departemen Teknik Elektro, Fakultas Teknik, Universitas Jenderal Soedirman,, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract

Sub-Cekungan Tarakan yang terletak di Provinsi Kalimantan Utara diperkirakan memiliki potensi hidrokarbon sekitar dua miliar barel oil equivalent (BOE). Tujuan dari penelitian ini adalah menganalisis kematangan batuan induk dan potensi hidrokarbon di Formasi Naintupo, Sub-Cekungan Tarakan. Metode yang digunakan dalam kajian ini adalah analisis Total Organic Carbon (TOC), Vitrinite Reflectance (Ro), Hydrogen Index (HI), Tmax, Potential Yield (PY), S1, Oxygen Index (OI), dan Oil Production Index (OPI). Hasil kajian ini adalah Formasi Naintupo merupakan batuan induk efektif menghasilkan hidrokarbon dengan nilai TOC antara 1,02-5,92 wt.%, HI 52-115 mgHC/gr TOC, Ro 0,62%-1,84%, Tmax 436oC-468oC, S1 0,17-0,32, dan OPI sebesar 0,15-0,4. Jenis hidrokarbon dengan potensi terbesar adalah gas bumi. Potensi gas bumi terbesar berada di Sumur South Sembakung-1, Tanjung Bimau-1, Sesayap E-1, dan Tanjung Kramat-1. Hasil analisis menunjukkan bahwa Formasi Naintupo berpotensi menghasilkan gas bumi di Sub-Cekungan Tarakan.

Fulltext View|Download
Keywords: TOC;Ro; formasi Naintupo; hidrokarbon; sub-cekungan Tarakan

Article Metrics:

  1. Abdullah, W. H., Togunwa, O. S., Makeen, Y. M., Hakimi, M. H., Mustapha, K. A., Baharuddin, M. H., Sia, S. G., & Tongkul, F. (2017). Hydrocarbon Source Potential of Eocene-Miocene Sequence of Western Sabah, Malaysia. Marine and Petroleum Geology, 83(1), 345-361. https://doi.org/10.1016/j.marpetgeo.2017.02.031
  2. Adeoye, J. A., Akande, S. O., Adekeye, O. A., Sonibare, W. A., Ondrak, R., Dominik, W., Erdtmann, B. D., & Neeka, J. (2020). Source Rock Maturity and Petroleum Generation in the Dahomey Basin SW Nigeria: Insights from Geologic and Geochemical Modelling. Journal of Petroleum Science and Engineering, 195(2), 1-17. https://doi.org/10.1016/j.petrol.2020.107844
  3. Al-Areeq, N. M. (2018). Petroleum Source Rocks Characterization and Hydrocarbon Generation (p. 28). London: Intech Open Publisher https://doi.org/10.5772/intechopen.70092
  4. Aziz, H., Ehsan, M., Ali, A., Khan, H. K., & Khan, A. (2020). Hydrocarbon Source Rock Evaluation and Quantification of Organic Richness from Correlation of Well Logs and Geochemical Data: a Case Study from the Sembar Formation, Southern Indus Basin, Pakistan. Journal of Natural Gas Science and Engineering, 81(2), 1-14. https://doi.org/10.1016/j.jngse.2020.103433
  5. Bojesen-Koefoed, J. A., Alsen, P., Bjerager, M., Hovikoski, J., Ineson, J., Nytoft, H. P., Nøhr-Hansen, H., Petersen, H. I., Pilgaard, A., & Vosgerau, H. (2020). A mid-Cretaceous Petroleum Source-Rock in the North Atlantic Region? Implications of the Nanok-1 Fully Cored Borehole, Hold with Hope, Northeast Greenland. Marine and Petroleum Geology, 117(1), 1-12. https://doi.org/10.1016/j.marpetgeo.2020.104414
  6. Chen, Z., Lavoie, D., Mort, A., Jiang, C., Zhang, S., Liu, X., Reyes, J., & Armstrong, D. (2020). Source Rock Kinetics and Petroleum Generation History of the Upper Ordovician Calcareous Shales of the Hudson Bay Basin and Surrounding Areas. Fuel, 270(1), 1-16. https://doi.org/10.1016/j.fuel.2020.117503
  7. Chen, Z., Liu, X., Guo, Q., Jiang, C., & Mort, A. (2017). Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194(1), 91-101. https://doi.org/10.1016/j.fuel.2016.12.052
  8. Cheng, B., Chen, Z., Chen, T., Yang, C., & Wang, T. G. (2018). Biomarker Signatures of the Ediacaran–Early Cambrian Origin Petroleum from the Central Sichuan Basin, South China: Implications for Source Rock Characteristics. Marine and Petroleum Geology, 96(2), 577-590. https://doi.org/10.1016/j.marpetgeo.2018.05.012
  9. Craig, J., Hakhoo, N., Bhat, G. M., Hafiz, M., Khan, M. R., Misra, R., Pandita, S. K., Raina, B. K., Thurow, J., Thusu, B., Ahmed, W., & Khullar, S. (2018). Petroleum Systems and Hydrocarbon Potential of the North-West Himalaya of India and Pakistan. In Earth-Science Reviews, 187(2), 109-185. https://doi.org/10.1016/j.earscirev.2018.09.012
  10. Curiale, J. A. (2017). Total Organic Carbon (TOC) (p. 5). New York: Springer Publishing. https://doi.org/10.1007/978-3-319-02330-4_3-1
  11. Curiale, J. A., & Curtis, J. B. (2016). Organic Geochemical Applications to the Exploration for Source-Rock Reservoirs - a Review. Journal of Unconventional Oil and Gas Resources, 13(1), 1-31. https://doi.org/10.1016/j.juogr.2015.10.001
  12. Dembicki, Jr., H. (2017). Source Rock Evaluation in Practical Petroleum Geochemistry for Exploration and Production (p. 129). Amsterdam: Elsevier Publishing Company. https://doi.org/10.1016/b978-0-12-803350-0.00003-9
  13. Hackley, P. C., Dennen, K. O., Garza, D., Lohr, C. D., Valentine, B. J., Hatcherian, J. J., Enomoto, C. B., & Dulong, F. T. (2020). Oil-Source Rock Correlation Studies in the Unconventional Upper Cretaceous Tuscaloosa Marine Shale (TMS) Petroleum System, Mississippi and Louisiana, USA. Journal of Petroleum Science and Engineering, 190(1), 1-16. https://doi.org/10.1016/j.petrol.2020.107015
  14. Halim, I., Amir, R. A., Nashir, M., Syafri, I., Ilmi, N. N., & Raharjo, W. B. (2017). A Comprehensive Geochemical Study Using Pyrolysis Analysis and Migration Pathway Map to Evaluate Source Rock Potential in Talang Akar Formation, Jambi Sub-Basin, South Sumatra, Indonesia. In AAPG Annual Convention and Exhibition (pp.1-17). Houstan, USA: AAPG Datapages Search and Discovery. https://www.searchanddiscovery.com/pdfz/documents/2017/10944halim/ndx_halim.pdf.html
  15. Hartwig, A., di Primio, R., Anka, Z., & Horsfield, B. (2012). Source Rock Characteristics and Compositional Kinetic Models of Cretaceous Organic Rich Black Shales Offshore Southwestern Africa. Organic Geochemistry, 51(2), 17-34. https://doi.org/10.1016/j.orggeochem.2012.07.008
  16. Heriyanto, N. (2018). An Overview of Hydrocarbon Maturity and Its Migration Aspects in Bunyu Island, Tarakan Basin. In Indonesian Petroleum Association Convention and Exhibition (pp. 1-22). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.1476.44562
  17. Hidayati, S. (2018). Re-Visited Structural Framework of the Tarakan Sub-Basin Northeast Kalimantan – Indonesia. In Indonesian Petroleum Convention and Exhibition (pp. 109-129). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.1717.07.g.109
  18. Husein, S. (2017). Lithostratigraphy of Tabul Formation and Onshore Geology of Nunukan Island, North Kalimantan. Journal of Applied Geology, 2(1), 25-35. https://doi.org/10.22146/jag.30255
  19. Laksono, F.A.T., & Manullang, S.F. (2020). Analisis Struktur Geologi Daerah Cinangsi Gandrungmangu Kabupaten Cilacap. Media Bina Ilmiah, 15(4), 4271–4278. https://doi.org/https://doi.org/10.33758/mbi.v15i4.776
  20. Laksono, F.A.T., Permanajati, I., & Mualim, R. (2020). Analisis Kualitas Air di Lahan Reklamasi Pertambangan Nikel Desa Mohoni, Petasia Timur, Morowali Utara. Jurnal Sains Teknologi & Lingkungan, 6(1), 96-104. https://doi.org/10.29303/jstl.v6i1.142
  21. Laksono, F.A.T., Ramadhan, G., Nurmajid, R.W., Paramita, L.A.G., & Tsai, L.L.Y. (2020). Analisis Zona Resapan dan Keluaran Air Tanah di Desa Kutayu, Kabupaten Brebes. Dinamika Rekayasa, 16(2), 97-104. https://doi.org/10.20884/1.dr.2020.16.2.321
  22. Laksono, F.A.T., Tsai, L.L.Y., & Pilarczyk, J. (2021). The Sedimentological Record of Upper Holocene Tsunami Event in Fengbin, Taiwan. Geopersia, 11(1), 169–203. https://doi.org/10.22059/geope.2020.301603.648548
  23. Lentini, M. R. (2018). Aspects of the Neogene Tectonic History and Hydrocarbon Geology of the Tarakan Basin. In Indonesian Petroleum Association Convention and Exhibition (pp. 241-251). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.1757.241.251
  24. Liu, D., Li, J., Liu, J. qi, & Zhang, L. (2020). Modeling Hydrocarbon Accumulation Based on Gas Origin and Source Rock Distribution in Paleozoic Strata of the Ordos Basin, China. International Journal of Coal Geology, 225(1), 1-14. https://doi.org/10.1016/j.coal.2020.103486
  25. Millayanti, A., Aprianto, A. R., Fauzan, R. F., & Anggara, M. U. (2019). Evaluation of Organic Matters, Hydrocarbon Potential and Thermal Maturity of Source Rocks Based on Geochemical and Statistical Methods: Case Study Miocene of the Seblat and Lemau Formation, Bengkulu Basin. IOP Conference Series: Earth and Environmental Science 248 012075. https://doi.org/10.1088/1755-1315/248/1/012075
  26. Nainggolan, T. B., Manai, M. N. I., & Subarsyah, S. (2018). Spectral Decomposition with Continuous Wavelet Transform for Hydrocarbon Zone Detection of North Bali Waters. Bulletin of the Marine Geology, 33(2), 79-92. https://doi.org/10.32693/bomg.33.2.2018.556
  27. Nugroho, S. H., Putra, P. S., Yulianto, E., & Noeradi, D. (2018). Multivariate Statistical Analysis for Characterization of Sedimentary Facies of Tarakan Sub-Basin, North Kalimantan. Marine Georesources and Geotechnology, 36(8), 907-917. https://doi.org/10.1080/1064119X.2017.1399178
  28. Ogala, J. E., Kalaitzidis, S., Christanis, K., Omo-Irabor, O. O., Akinmosin, A., Yusuf, C. U., Pasadakis, N., Constantinopoulos, M., & Papaefthymiou, H. (2019). Geochemical and Organic Petrological Study of Bituminous Sediments from Dahomey Basin, SW Nigeria. Marine and Petroleum Geology, 99(1), 577-595. https://doi.org/10.1016/j.marpetgeo.2018.10.033
  29. Purnama, D. I., Putra, Y. S., Muhardi, M., Hayati, N., & Triwerdhana, A. (2020). Identifikasi Potensi Batuan Induk pada Formasi Santul di Sub-Cekungan Tarakan, Kalimantan Utara. Prisma Fisika, 8(1), 1-4. https://doi.org/10.26418/pf.v8i1.39637
  30. Rahmola, W. R. P. (2018). The Organic Geochemistry of Oil Shale : Potential Source Rock of Galugur Unit in Kapur IX Intramontane Basin, West Sumatra. In Indonesian Petroleum Association Convention and Exhibition (pp. 227-247). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa19.sg.227
  31. Rizqi, A. H. F., & Husein, S. (2017). Identifikasi Batuan Sumber Hidrokarbon Formasi Rambatan di Daerah Pamulihan, Kecamatan Larangan Kabupaten Brebes, Jawa Tengah. In Seminar Nasional Rekayasa Teknologi Industri dan Informasi (pp. 244-250). Yogyakarta, Indonesia: Institut Teknologi Nasional Yogyakarta. https://123dok.com/document/yn4o7pjz-identifikasi-hidrokarbon-formasi-rambatan-pamulihan-kecamatan-larangan-kabupaten.html
  32. Ronoatmojo, I. S., & Burhannudinnur, M. (2018). Anisotropic Properties Identification of Naintupo Formation, Tabul Formation and Tarakan Formation (Tarakan Sub-Basin) Using Anisotropic Parameters Determination Method from P-Wave Seismic Diffraction Function. IOP Conference Series: Earth and Environmental Science 212 012075. https://doi.org/10.1088/1755-1315/212/1/012075
  33. Sha, J., Chen, J., Zhang, B., Chen, P., Zhang, S., Zeng, J., Liu, W., Wang, X., Zhang, P., Yao, D., Cao, J., & Hu, Y. (2020). Geochemistry of Source Rock-Controlled Late Triassic Coal: an Example from the Dabaoding Coal Mine in Panzhihua, Sichuan Province, Southwestern China. International Journal of Coal Geology, 221(1), 1-30. https://doi.org/10.1016/j.coal.2020.103431
  34. Słowakiewicz, M., Gluyas, J., Kowalski, A., Edwards, T., Słama, S., Mawson, M., Tucker, M. E., Scovell, P., & Polonio, I. (2020). A New and Working Petroleum Source Rock on the UK Continental Shelf (Upper Permian, Offshore Yorkshire). Marine and Petroleum Geology, 121(2), 1-18. https://doi.org/10.1016/j.marpetgeo.2020.104605
  35. Sokol, E., Kozmenko, O., Smirnov, S., Sokol, I., Novikova, S., Tomilenko, A., Kokh, S., Ryazanova, T., Reutsky, V., Bul’bak, T., Vapnik, Y., & Deyak, M. (2014). Geochemical Assessment of Hydrocarbon Migration Phenomena: Case Studies from the South-Western Margin of the Dead Sea Basin. Journal of Asian Earth Sciences, 93(2), 211-228. https://doi.org/10.1016/j.jseaes.2014.07.023
  36. Spacapan, J. B., Palma, J. O., Galland, O., Manceda, R., Rocha, E., D’Odorico, A., & Leanza, H. A. (2018). Thermal Impact of Igneous Sill-Complexes on Organic-Rich Formations and Implications for Petroleum Systems: a Case Study in the Northern Neuquén Basin, Argentina. Marine and Petroleum Geology, 91(1), 519-531. https://doi.org/10.1016/j.marpetgeo.2018.01.018
  37. Spigolon, A. L. D., Lewan, M. D., de Barros Penteado, H. L., Coutinho, L. F. C., & Mendonça Filho, J. G. (2015). Evaluation of the Petroleum Composition and Quality with Increasing Thermal Maturity as Simulated by Hydrous Pyrolysis: a Case Study Using a Brazilian Source Rock with Type I Kerogen. Organic Geochemistry, 83(1), 27-53. https://doi.org/10.1016/j.orggeochem.2015.03.001
  38. Subroto, E. A. (2018). Petroleum Geochemistry Study in a Sequence Stratigraphic Framework in the
  39. Simenggaris Block, Tarakan Basin, East Kalimantan, Indonesia. In Indonesian Petroleum Association Convention and Exhibition (pp. 421-433). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.673.05.g.159
  40. Sukanta, U. (2018). Understanding Hydrocarbon-Bearing Reservoirs and Their Critical Factors for Deep Water Exploration in the Tarakan Basin, North East Kalimantan, Indonesia. In Indonesian Petroleum Association Convention and Exhibition (pp. 155-175). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.2405.09.g.155
  41. Walters, C. C. (2017). Origin of Petroleum. In Hsu, C.S. (Ed). Springer Handbook of Petroleum Technology (pp. 359-379). New York: Springer Publishing Company. https://doi.org/10.1007/978-3-319-49347-3_10
  42. Wang, G. C., Sun, M. Z., Gao, S. F., & Tang, L. (2018). The Origin, Type and Hydrocarbon Generation Potential of Organic Matter in a Marine-Continental Transitional Facies Shale Succession (Qaidam Basin, China). Scientific Reports, 8(1), 1-15. https://doi.org/10.1038/s41598-018-25051-1
  43. Wang, P. C., Li, S. Z., Guo, L. L., Jiang, S. H., Somerville, I. D., Zhao, S. J., Zhu, B. D., Chen, J., Dai, L. M., Suo, Y. H., & Han, B. (2016). Mesozoic and Cenozoic Accretionary Orogenic Processes in Borneo and Their Mechanisms. Geological Journal, 51(1), 464-489. https://doi.org/10.1002/gj.2835
  44. Wicaksana, H.I., Laksono, F.A.T., & Alam, A.R. (2018). The Problematical Solution of Shale Gas Explitation as Alternative Energy for National Independent Oil and Gas. In Indonesian Petroleum Association Convention and Exhibition (pp. 30-38). Jakarta, Indonesia: AAPG Datapages Search and Discovery. https://doi.org/10.29118/ipa.0.13.se.030
  45. Widagdo, A., Purwasatriya, E.B., Laksono, F.A.T., & Waluyo, S. (2021). Posisi Artefak Batuan pada Teras Sungai Klawing di Daerah Bobotsari, Kabupaten Purbalingga, Jawa Tengah. Media Bina Ilmiah, 15(7), 4861–4866. https://doi.org/10.33758/mbi.v15i7.953
  46. Widjaja, P. H., & Noeradi, D. (2016). 3D Properties Modeling to Support Reservoir Characteristics of W-ITB Field in Madura Strait Area. Bulletin of the Marine Geology, 25(2), 77-88. https://doi.org/10.32693/bomg.25.2.2010.27
  47. Wijaya, P. H., Noeradi, D., Permadi, A. K., Usman, U., & Djaja, A. W. (2012). Oil and Gas Potential on the Basis of Wells and Seismic Profiles Integration in Offshore Area of Tarakan Basin, East Kalimantan. Jurnal Geologi Kelautan, 10(3), 117-132. http://dx.doi.org/10.32693/jgk.10.3.2012.221
  48. Winegardner, D. L., & Testa, S. M. (2020). Hydrocarbon Chemistry in Restoration of Contaminated Aquifers (p. 42). Boca Raton: CRC Press. https://doi.org/10.1201/9781420033014-6
  49. Xiao, H., Li, M., Liu, J., Mao, F., Cheng, D., & Yang, Z. (2019). Oil-Oil and Oil-Source Rock Correlations in the Muglad Basin, Sudan and South Sudan: New Insights from Molecular Markers Analyses. Marine and Petroleum Geology, 103(1), 351-365. https://doi.org/10.1016/j.marpetgeo.2019.03.004
  50. Xue, C., Wu, J., Zhong, J., Zhang, S., Zhang, B., Hao, B., & Wang, D. (2019). Characteristics of the Marine-Terrigenous Interdepositional Shale: a Case Study of Taiyuan Formation in Linxing Area of Ordos Basin. Advances in Geo-Energy Research, 2(1), 72-85. https://doi.org/ 10.26804/ager.2018.01.07
  51. Yang, Z., & Zou, C. (2019). Exploring Petroleum Inside Source Kitchen: Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1), 181-193. https://doi.org/10.1016/S1876-3804(19)30018-7

Last update:

No citation recorded.

Last update: 2025-01-21 22:19:28

No citation recorded.