skip to main content

Review: Aplikasi Material Komposit Berbasis Kitosan sebagai Bahan Kemasan Makanan

*Shalahudin Nur Ayyubi  -  Department of Chemical Engineering, Universitas Diponegoro, Indonesia
Kusmiyati Kusmiyati  -  Departemen Teknik Industri, Fakultas Teknik, Universitas Dian Nuswantoro, Indonesia
Aprilina Purbasari  -  Departemen Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Indonesia
Wahyu Zuli Pratiwi  -  Departemen Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract

Perhatian terhadap biopolimer pada zaman sekarang semakin meningkat disebabkan oleh banyaknya bahan kemasan berbasis plastik yang tak dapat terurai secara alami. Kitosan dapat dijadikan sebagai alternatif pengganti polimer sintetik untuk material yang baru. Untuk melihat kesesuaian suatu material sebagai bahan pengemas makanan, perlu dilakukan kajian terhadap sifat mekanik dan permeabilitas. Sifat mekanik digunakan untuk memprediksi perilaku film selama pengangkutan, penanganan dan penyimpanan makanan kemasan. Sifat penghalang memainkan peran kunci dalam menjaga kualitas produk makanan. Sifat mekanik dan permeabilitas film kitosan murni cocok untuk kemasan makanan dan kemasan aktif. Sifat-sifat ini dapat dimodifikasi dengan menggabungkan kitosan dengan material lain seperti pemplastis, polisakarida, protein dan lipid. Kombinasi ini menyesuaikan sifat-sifat hasil polimer akhir untuk memperpanjang masa simpan makanan, sambil mempertahankan sifat kualitas makanan dan kemampuan terurai secara alami dari polimer tersebut. Kitosan juga menunjukkan aktivitas antimikroba yang baik terhadap berbagai macam jamur makanan, ragi, dan bakteri gram negatif dan gram positif. Sifat antimikroba ini telah menjadikan kitosan sebagai polimer untuk pengembangan kemasan aktif dengan kemampuan menghambat pertumbuhan mikroorganisme serta meningkatkan keamanan pangan.

Fulltext View|Download
Keywords: plastik biodegradable; kitosan; biopolimer; material komposit; kemasan makanan aktif

Article Metrics:

  1. Abugoch, L. E., Tapia, C., Villamán, M. C., Yazdani-Pedram, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein-chitosan blend edible films. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2010.08.008
  2. Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6), 837–842
  3. Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry. https://doi.org/10.1016/j.foodchem.2010.06.085
  4. Almeida, E. V. R., Frollini, E., Castellan, A., & Coma, V. (2010). Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydrate Polymers, 80(3). https://doi.org/10.1016/j.carbpol.2009.10.039
  5. Arvanitoyannis, I., Kolokuris, I., Nakayama, A., Yamamoto, N., & Aiba, S. (1997). Physico-chemical studies of chitosan-poly (vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers, 34(1–2), 9–19
  6. Ayranci, E., & Tunc, S. (2003). A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry, 80(3). https://doi.org/10.1016/S0308-8146(02)00485-5
  7. Bof, M. J., Bordagaray, V. C., Locaso, D. E., & García, M. A. (2015). Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2015.05.018
  8. Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 35, 463–470
  9. Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. M., & Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5). https://doi.org/10.1111/j.1365-2621.1996.tb10909.x
  10. Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of Edible Films and Coatings with Antimicrobial Activity. In Food and Bioprocess Technology (Vol. 4, Issue 6). https://doi.org/10.1007/s11947-010-0434-1
  11. Cazón, P., & Vázquez, M. (2019). Applications of chitosan as food packaging materials. In Sustainable Agriculture Reviews 36 (pp. 81–123). Springer
  12. Cazón, P., Vázquez, M., & Velazquez, G. (2018). Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydrate Polymers, 195, 432–443
  13. Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148
  14. Chenite, A., Buschmann, M., Wang, D., Chaput, C., & Kandani, N. (2001). Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46(1). https://doi.org/10.1016/S0144-8617(00)00281-2
  15. Chi, S., Zivanovic, S., & Penfield, M. P. (2006). Application of chitosan films enriched with oregano essential oil on bologna - Active compounds and sensory attributes. Food Science and Technology International, 12(2). https://doi.org/10.1177/1082013206063845
  16. Chien, P., & Chou, C. (2006). Antifungal activity of chitosan and its application to control post‐harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata). Journal of the Science of Food and Agriculture, 86(12), 1964–1969
  17. Chien, P. J., Sheu, F., & Lin, H. R. (2007). Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry, 100(3). https://doi.org/10.1016/j.foodchem.2005.10.068
  18. Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1). https://doi.org/10.1016/j.jfoodeng.2005.09.022
  19. Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of chitosan coating solution on “Fuji” apple skin. Journal of Food Science, 67(7). https://doi.org/10.1111/j.1365-2621.2002.tb08796.x
  20. Cui, H., Yuan, L., Li, W., & Lin, L. (2017). Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. International Journal of Food Science and Technology, 52(3). https://doi.org/10.1111/ijfs.13322
  21. de Morais Lima, M., Carneiro, L. C., Bianchini, D., Dias, A. R. G., Zavareze, E. da R., Prentice, C., & Moreira, A. da S. (2017). Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum. Journal of Food Science. https://doi.org/10.1111/1750-3841.13653
  22. Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6). https://doi.org/10.1016/j.fm.2004.02.008
  23. Di Pierro, P., Chico, B., Villalonga, R., Mariniello, L., Damiao, A. E., Masi, P., & Porta, R. (2006). Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analysis of their mechanical and barrier properties. Biomacromolecules. https://doi.org/10.1021/bm050661u
  24. Djioua, T., Charles, F., Freire, M., Filgueiras, H., Ducamp-Collin, M. N., & Sallanon, H. (2010). Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera indica L.). International Journal of Food Science and Technology, 45(4). https://doi.org/10.1111/j.1365-2621.2010.02209.x
  25. Doğan, G., & İzci, L. (2017). Effects on quality properties of smoked rainbow trout (Oncorhynchus mykiss) fillets of chitosan films enriched with essential oils. Journal of Food Processing and Preservation, 41(1). https://doi.org/10.1111/jfpp.12757
  26. Dong, H., Cheng, L., Tan, J., Zheng, K., & Jiang, Y. (2004). Effects of chitosan coating on quality and shelf life of peeled litchi fruit. Journal of Food Engineering, 64(3). https://doi.org/10.1016/j.jfoodeng.2003.11.003
  27. Duan, J., Park, S. I., Daeschel, M. A., & Zhao, Y. (2007). Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. Journal of Food Science, 72(9). https://doi.org/10.1111/j.1750-3841.2007.00556.x
  28. Duan, Jingyun, Wu, R., Strik, B. C., & Zhao, Y. (2011). Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2010.08.006
  29. Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17(5). https://doi.org/10.1016/j.foodcont.2004.10.024
  30. Durango, A. M., Soares, N. F. F., Benevides, S., Teixeira, J., Carvalho, M., Wobeto, C., & Andrade, N. J. (2006). Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packaging Technology and Science, 19(1). https://doi.org/10.1002/pts.713
  31. Eissa, H. A. A. (2007). Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. Journal of Food Quality. https://doi.org/10.1111/j.1745-4557.2007.00147.x
  32. El Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Chitosan Coating Effect on Storability and Quality of Fresh Strawberries. Journal of Food Science. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x
  33. Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33(4), 1819–1841
  34. Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. In Trends in Food Science and Technology (Vol. 22, Issue 6). https://doi.org/10.1016/j.tifs.2011.02.004
  35. Fan, M., & Hu, Q. (2009). Chitosan-LiOH-urea aqueous solution-a novel water-based system for chitosan processing. Carbohydrate Research, 344(7). https://doi.org/10.1016/j.carres.2009.03.002
  36. Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Pascoal Neto, C., Gandini, A., Berglund, L. A., & Salmén, L. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2010.02.037
  37. Ferreira, A. S., Nunes, C., Castro, A., Ferreira, P., & Coimbra, M. A. (2014). Influence of grape pomace extract incorporation on chitosan films properties. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2014.07.032
  38. Fisk, C. L., Silver, A. M., Strik, B. C., & Zhao, Y. (2008). Postharvest quality of hardy kiwifruit (Actinidia arguta ’Ananasnaya’) associated with packaging and storage conditions. Postharvest Biology and Technology, 47(3). https://doi.org/10.1016/j.postharvbio.2007.07.015
  39. Garcia, M. A., Pinotti, A., & Zaritzky, N. E. (2006). Physicochemical, water vapor barrier and mechanical properties of corn starch and chitosan composite films. Starch/Staerke. https://doi.org/10.1002/star.200500484
  40. Ghaouth, A. El, Ponnampalam, R., Castaigne, F., & Arul, J. (2019). Chitosan Coating to Extend the Storage Life of Tomatoes. HortScience. https://doi.org/10.21273/hortsci.27.9.1016
  41. Gómez-Estaca, J., Gómez-Guillén, M. C., Fernández-Martín, F., & Montero, P. (2011). Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2011.01.007
  42. Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology. https://doi.org/10.1016/j.fm.2010.05.012
  43. Hafsa, J., Smach, M. ali, Ben Khedher, M. R., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2015.12.050
  44. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 71(2–3). https://doi.org/10.1016/S0168-1605(01)00609-2
  45. Jia, D., Fang, Y., & Yao, K. (2009). Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing, 87(1). https://doi.org/10.1016/j.fbp.2008.06.002
  46. Jiang, Y., & Li, Y. (2001). Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chemistry, 73(2). https://doi.org/10.1016/S0308-8146(00)00246-6
  47. Jianglian, D. (2013). Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review. Journal of Food Processing & Technology. https://doi.org/10.4172/2157-7110.1000227
  48. Jridi, M., Hajji, S., Ayed, H. Ben, Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., & Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2014.03.054
  49. Kakaei, S., & Shahbazi, Y. (2016). Effect of chitosan-gelatin film incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil on survival of Listeria monocytogenes and chemical, microbial and sensory properties of minced trout fillet. LWT - Food Science and Technology, 72. https://doi.org/10.1016/j.lwt.2016.05.021
  50. Kerch, G., & Korkhov, V. (2011). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232(1), 17–22
  51. Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R., & Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2012.07.037
  52. Kim, K. M., Son, J. H., Kim, S., Weller, C. L., & Hanna, M. A. (2006). Properties of chitosan films as a function of pH and solvent type. Journal of Food Science, 71(3), E119–E124
  53. Kim, S. H., No, H. K., & Prinyawiwatkul, W. (2007). Effect of molecular weight, type of chitosan, and chitosan solution pH on the shelf‐life and quality of coated eggs. Journal of Food Science, 72(1), S044–S048
  54. Kolhe, P., & Kannan, R. M. (2003). Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules, 4(1), 173–180
  55. Leceta, I., Guerrero, P., & De La Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1), 339–346
  56. Leceta, I., Molinaro, S., Guerrero, P., Kerry, J. P., & De la Caba, K. (2015). Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2014.09.022
  57. Lee, J. H., Lee, J. H., Yang, H. J., & Song, K. Bin. (2015). Preparation and characterization of brewer’s spent grain protein-chitosan composite films. Journal of Food Science and Technology, 52(11). https://doi.org/10.1007/s13197-015-1941-x
  58. Lee, M. H., Kim, S. Y., & Park, H. J. (2018). Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.05.048
  59. Li, H., & Yu, T. (2001). Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. Journal of the Science of Food and Agriculture, 81(2), 269–274
  60. Li, J., Zivanovic, S., Davidson, P. M., & Kit, K. (2010). Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2009.09.028
  61. Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-
  62. Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82(2). https://doi.org/10.1016/j.carbpol.2010.04.069
  63. Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. In Trends in Food Science and Technology (Vol. 8, Issue 7). https://doi.org/10.1016/S0924-2244(97)01051-0
  64. Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2016). Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2015.10.015
  65. Moradi, M., Tajik, H., Razavi Rohani, S. M., & Oromiehie, A. R. (2011). Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. Journal of the Science of Food and Agriculture, 91(15). https://doi.org/10.1002/jsfa.4531
  66. Moradi, M., Tajik, H., Razavi Rohani, S. M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2011.11.020
  67. Moreira, M. del R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT - Food Science and Technology, 44(10). https://doi.org/10.1016/j.lwt.2011.04.009
  68. Morgado, D. L., Frollini, E., Castellan, A., Rosa, D. S., & Coma, V. (2011). Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose, 18(3). https://doi.org/10.1007/s10570-011-9516-0
  69. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. In International Journal of Biological Macromolecules (Vol. 105). https://doi.org/10.1016/j.ijbiomac.2017.07.087
  70. No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. In Journal of Food Science (Vol. 72, Issue 5). https://doi.org/10.1111/j.1750-3841.2007.00383.x
  71. No, Hong Kyoon, Young Park, N., Ho Lee, S., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1–2). https://doi.org/10.1016/S0168-1605(01)00717-6
  72. Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. https://doi.org/10.1016/j.foodchem.2010.02.033
  73. Ouattar, B., Simard, R. E., Piett, G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1–2). https://doi.org/10.1016/S0168-1605(00)00407-4
  74. Park, H. J., Weller, C. L., Vergano, P. J., & Testin, R. F. (1993). Permeability and Mechanical Properties of Cellulose‐Based Edible Films. Journal of Food Science, 58(6). https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
  75. Park, S. I., Daeschel, M. A., & Zhao, Y. (2004). Functional properties of antimicrobial lysozyme-chitosan composite films. Journal of Food Science, 69(8). https://doi.org/10.1111/j.1365-2621.2004.tb09890.x
  76. Park, S. Y., Marsh, K. S., & Rhim, J. W. (2002). Characteristics of different molecular weight chitosan films affected by the type of organic solvents. Journal of Food Science, 67(1). https://doi.org/10.1111/j.1365-2621.2002.tb11382.x
  77. Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2011.01.001
  78. Pitak, N., & Rakshit, S. K. (2011). Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables. LWT-Food Science and Technology, 44(10), 2310–2315
  79. Priyadarshi, R., Sauraj, Kumar, B., & Negi, Y. S. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2018.04.089
  80. Qi, H., Hu, W., Jiang, A., Tian, M., & Li, Y. (2011). Extending shelf-life of Fresh-cut “Fuji” apples with chitosan-coatings. Innovative Food Science and Emerging Technologies, 12(1). https://doi.org/10.1016/j.ifset.2010.11.001
  81. Rao, M. S., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2010.06.058
  82. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632
  83. Romanazzi, G., Nigro, F., Ippolito, A., DiVenere, D., & Salerno, M. (2002). Effects of pre- and postharvest chitosan treatments to control storage grey mold of table grapes. Journal of Food Science, 67(5). https://doi.org/10.1111/j.1365-2621.2002.tb08737.x
  84. Rong, S. Y., Mubarak, N. M., & Tanjung, F. A. (2017). Structure-property relationship of cellulose nanowhiskers reinforced chitosan biocomposite films. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2017.11.054
  85. Rouhi, M., Razavi, S. H., & Mousavi, S. M. (2017). Optimization of crosslinked poly(vinyl alcohol) nanocomposite films for mechanical properties. Materials Science and Engineering C, 71. https://doi.org/10.1016/j.msec.2016.11.135
  86. Ruiz-Navajas, Y., Viuda-Martos, M., Barber, X., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2015). Effect of chitosan edible films added with Thymus moroderi and Thymus piperella essential oil on shelf-life of cooked cured ham. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-015-1733-3
  87. Sabaghi, M., Maghsoudlou, Y., & Habibi, P. (2015). Enhancing structural properties and antioxidant activity of kefiran films by chitosan addition. Food Structure. https://doi.org/10.1016/j.foostr.2015.06.003
  88. Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2). https://doi.org/10.1016/j.jfoodeng.2011.02.028
  89. Santacruz, S., Rivadeneira, C., & Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source andconcentration, plasticizer, surfactant’s hydrophobic tail andmechanical treatment. Food Hydrocolloids, 49. https://doi.org/10.1016/j.foodhyd.2015.03.019
  90. Serrano-León, J. S., Bergamaschi, K. B., Yoshida, C. M. P., Saldaña, E., Selani, M. M., Rios-Mera, J. D., Alencar, S. M., & Contreras-Castillo, C. J. (2018). Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product. Food Research International. https://doi.org/10.1016/j.foodres.2018.03.031
  91. Shao, X. F., Tu, K., Tu, S., & Tu, J. (2012). A Combination of heat treatment and chitosan coating delays ripening and reduces decay in “gala” apple fruit. Journal of Food Quality, 35(2). https://doi.org/10.1111/j.1745-4557.2011.00429.x
  92. Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2014.11.046
  93. Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. In Trends in Food Science and Technology (Vol. 19, Issue 12). https://doi.org/10.1016/j.tifs.2008.07.003
  94. Soares, N. M., Mendes, T. S., & Vicente, A. A. (2013). Effect of chitosan-based solutions applied as edible coatings and water glazing on frozen salmon preservation - A pilot-scale study. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2013.05.018
  95. Souza, B. W. S., Cerqueira, M. A., Ruiz, H. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010). Effect of Chitosan-based coatings on the shelf life of Salmon (Salmo salar). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf102366k
  96. Souza, M. P., Vaz, A. F. M., Silva, H. D., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. Food and Bioprocess Technology, 8(11). https://doi.org/10.1007/s11947-015-1580-2
  97. Souza, V. G. L., Fernando, A. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., & Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2017.04.056
  98. Spotti, M. L., Cecchini, J. P., Spotti, M. J., & Carrara, C. R. (2016). Brea Gum (from Cercidium praecox) as a structural support for emulsion-based edible films. LWT - Food Science and Technology, 68. https://doi.org/10.1016/j.lwt.2015.12.018
  99. Srinivasa, P. C., Ramesh, M. N., Kumar, K. R., & Tharanathan, R. N. (2003). Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydrate Polymers, 53(4), 431–438
  100. Srinivasa, P. C., Ramesh, M. N., Kumar, K. R., & Tharanathan, R. N. (2004). Properties of chitosan films prepared under different drying conditions. Journal of Food Engineering, 63(1). https://doi.org/10.1016/S0260-8774(03)00285-1
  101. Srinivasa, P. C., Ramesh, M. N., & Tharanathan, R. N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21(7), 1113–1122
  102. Suyatma, N. E., Tighzert, L., Copinet, A., & Coma, V. (2005). Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 53(10), 3950–3957
  103. Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., & González-Martínez, C. (2017). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2016.10.080
  104. Thakhiew, W., Champahom, M., Devahastin, S., & Soponronnarit, S. (2015). Improvement of mechanical properties of chitosan-based films via physical treatment of film-forming solution. Journal of Food Engineering, 158, 66–72
  105. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: Past, present and future. In Trends in Food Science and Technology (Vol. 14, Issue 3). https://doi.org/10.1016/S0924-2244(02)00280-7
  106. Valencia-Sullca, C., Atarés, L., Vargas, M., & Chiralt, A. (2018). Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation. Food and Bioprocess Technology, 11(7). https://doi.org/10.1007/s11947-018-2094-5
  107. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: Mechanical, barrier and structural properties. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2012.08.010
  108. Van Den Broek, L. A. M., Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116. https://doi.org/10.1016/j.carbpol.2014.07.039
  109. Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1. https://doi.org/10.1016/j.profoo.2011.09.007
  110. Vartiainen, J., Motion, R., Kulonen, H., Rättö, M., Skyttä, E., & Ahvenainen, R. (2004). Chitosan-coated paper: Effects of nisin and different acids on the antimicrobial activity. Journal of Applied Polymer Science, 94(3). https://doi.org/10.1002/app.20701
  111. Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Science and Technology, 52(2). https://doi.org/10.1016/j.lwt.2013.02.004
  112. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., & Testin, R. F. (2000). Water vapor transmission rates and sorption behavior of chitosan films. Journal of Food Science, 65(7). https://doi.org/10.1111/j.1365-2621.2000.tb10261.x
  113. Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2004.03.002
  114. Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4). https://doi.org/10.1016/j.carbpol.2008.05.003
  115. Zhang, L., Mao, Y., Zhou, J., & Cai, J. (2005). Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/Urea aqueous solution. Industrial and Engineering Chemistry Research, 44(3). https://doi.org/10.1021/ie0491802
  116. Zhang, W., & Xia, W. (2014). Dissolution and stability of chitosan in a sodium hydroxide/urea aqueous solution. Journal of Applied Polymer Science, 131(3). https://doi.org/10.1002/app.39819
  117. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starch-chitosan composite films as a function of acid solvent types. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2010.11.041
  118. Ziani, K., Oses, J., Coma, V., & Maté, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT-Food Science and Technology, 41(10), 2159–2165

Last update:

No citation recorded.

Last update: 2024-04-27 01:24:02

No citation recorded.