skip to main content

Analisis Variasi Temperatur Sintering dan Ukuran Agen Pengembang Dolomit terhadap Fabrikasi Paduan Logam Mg-Ca-Zn Berpori Tertutup dengan Proses Metalurgi Serbuk

Franciska P. Lestari  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Brama A. Saputra  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Aprilia Erryani  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Inti Mulyati  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Made Subekti Dwijaya  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
*Ika Kartika  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract

Paduan logam berpori berbasis magnesium sangat potensial dalam aplikasi prostesis biomedis. Kalsium, seng dan agen pengembang ditambahkan untuk melengkapi fungsi dan aplikasi paduan. Dalam studi ini, paduan logam berpori Mg-Ca-Zn dikembangkan dengan proses metalurgi serbuk menggunakan dolomit (CaMg(CO3)2) sebagai agen pengembang untuk menghasilkan pori jenis tertutup. Variasi ukuran agen pengembang dan temperatur sintering dilakukan dengan tujuan untuk mencapai ukuran, persentasi dan kehomogenan pori yang terbentuk dalam paduan, dimana pori berfungsi untuk pertumbuhan tulang baru. Komposisi (%berat) paduan yang dikembangkan adalah 84,5Mg-0,5Ca-5Zn-10CaMg(CO3)2, dengan variasi temperatur sintering T = 650, 675, dan 700°C dan waktu tahan 5 jam, sedangkan ukuran dolomit CaMg(CO3)2 divariasikan -30 #, -50 #, -80 #. Paduan hasil sintering diuji XRD (x-ray diffraction) untuk menganalisis fasa yang terbentuk. Ukuran dan kehomogenan pori hasil sintering diamati dengan SEM (scanning electron microscopy), dan persentasi pori yang terbentuk diukur dengan menggunakan metode Archimedes sesuai standar ASTM B311-93. Sifat mekanik dari paduan hasil sintering diuji dengan alat uji kompresi mengacu pada standar ASTM D-695-02. Analisis XRD (x-ray diffraction) dalam paduan 84,5Mg-0,5Ca-5Zn-10CaMg(CO3)2hasil sintering terbentuk fasa Mg sebagai matriks, MgO, CaCO3 dan dolomit (CaMg(CO3)2). Persentasi porositas tertinggi diperoleh sebesar 32,60% dengan ukuran pori terbesar adalah ≤300 μm dan kekuatan tekan 143 MPa. Kondisi ini dihasilkan dalam paduan dengan ukuran partikel dolomit -30# dan temperatur sintering 700°C. Teknologi metalurgi serbuk dengan variasi temperatur sintering dan variasi ukuran agen pengembang dolomit berpengaruh signifikan terhadap ukuran, persentasi, dan kehomogenan pori serta sifat mekanik yang dihasilkan dalam paduan 84,5Mg-0,5Ca-5Zn.

Fulltext View|Download
Keywords: logam berpori tertutup; biomaterial; paduan 84,5Mg-0,5Ca-5Zn; agen pengembang dolomit (CaMg(CO3)2); metalurgi serbuk
Funding: Kemenristekdikti 2018

Article Metrics:

  1. Aghion, E., & Perez, Y. (2014). Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Materials Characterization, 96, 78–83. https://doi.org/10.1016/j.matchar.2014.07.012
  2. Annur, D., Lestari, F. P., Erryani, A., & Kartika, I. (2018). Study of sintering on Mg-Zn-Ca alloy system. AIP Conference Proceedings, 1964(May). https://doi.org/10.1063/1.5038311
  3. Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546–554. https://doi.org/10.1016/j.tibtech.2012.07.005
  4. Čapek, J., & Vojtěch, D. (2014). Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Materials Science and Engineering C, 35(1), 21–28. https://doi.org/10.1016/j.msec.2013.10.014
  5. Erryani, A., Pramuji, F., Annur, D., Amal, M. I., & Kartika, I. (2017). Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3 System. IOP Conference Series: Materials Science and Engineering, 202(1). https://doi.org/10.1088/1757-899X/202/1/012028
  6. Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341–344. https://doi.org/10.1016/j.scriptamat.2006.11.010
  7. García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 20–24. https://doi.org/10.3390/ma9020085
  8. Hossain, F. M., Dlugogorski, B. Z., Kennedy, E. M., Belova, I. V, & Murch, G. E. (2011). First-principles study of the electronic , optical and bonding properties in dolomite. Computational Materials Science, 50(3), 1037–1042. https://doi.org/10.1016/j.commatsci.2010.10.044
  9. Jablonski, M. O. M. (2015). Thermal behavior of natural dolomite. December 2014, 2239–2248. https://doi.org/10.1007/s10973-014-4301-6
  10. Kennedy, A. (2012). Porous Metals and Metal Foams Made from Powders. Powder Metallurgy. https://doi.org/10.5772/33060
  11. Koizumi, T., Kido, K., Kita, K., Mikado, K., Gnyloskurenko, S., & Nakamura, T. (2011). Foaming agents for powder metallurgy production of aluminum foam. Materials Transactions, 52(4), 728–733. https://doi.org/10.2320/matertrans.M2010401
  12. Kong, X., Wang, L., Li, G., Qu, X., Niu, J., Tang, T., Dai, K., Yuan, G., & Hao, Y. (2018). Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model. Materials Science and Engineering C, 86(July 2017), 42–47. https://doi.org/10.1016/j.msec.2017.12.014
  13. Lara-Rodriguez, G. A., Figueroa, I. A., Suarez, M. A., Novelo-Peralta, O., Alfonso, I., & Goodall, R. (2017). A replication-casting device for manufacturing open-cell Mg foams. Journal of Materials Processing Technology, 243, 16–22. https://doi.org/10.1016/j.jmatprotec.2016.11.041
  14. Li, B. Q., Wang, C. Y., & Lu, X. (2013). Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique. Materials and Design, 50, 613–619. https://doi.org/10.1016/j.matdes.2013.02.082
  15. Makó, É. (2007). The effect of quartz content on the mechanical activation of dolomite. Journal of the European Ceramic Society, 27(2–3), 535–540. https://doi.org/10.1016/j.jeurceramsoc.2006.04.170
  16. Ramirez, A. M. M. (2016). Production of highly porous Al-Ni foams by powder metallurgy using dolomite as a foaming agent (Doctoral dissertation, Concordia University Montreal)
  17. N.Kartthikeyen, S. V. (2017). Effects of Calcium Carbonate , Magnesium Carbonate and Dolomite in Aluminium Alloy. International Journal of Innovative Research in Sience, Engineering and Technology, 6(8), 66–74
  18. Patel, P., Bhingole, P. P., & Makwana, D. (2018). Manufacturing, characterization and applications of lightweight metallic foams for structural applications: Review. Materials Today: Proceedings, 5(9), 20391–20402. https://doi.org/10.1016/j.matpr.2018.06.414
  19. Pramuji, F., Eryani, A., Amal, M. I., Annur, D., Munir, B., & Kartika, I. (2015). The 2 nd International Conference on Materials and Metallurgical Technology 2015 ( ICOMMET 2015 ) The 7 th International Conference on Sensors ASIASENSE 2015 Surabaya , 4-6 October 2015 The 2 nd International Conference on Materials and Metallurgical Tech. 2015(October), 4–6
  20. Ramírez-Rico, J., Martínez-Fernández, J., & Singh, M. (2012). Effect of oxidation on the compressive strength of sintered SiC-fiber bonded ceramics. Materials Science and Engineering A, 534, 394–399. https://doi.org/10.1016/j.msea.2011.11.085
  21. Samtani, M., Dollimore, D., Wilburn, F. W., & Alexander, K. (2001). Isolation and identification of the intermediate and final products in the thermal decomposition of dolomite in an atmosphere of carbon dioxide. Thermochimica Acta, 367–368, 285–295. https://doi.org/10.1016/S0040-6031(00)00662-6
  22. Teișanu, C., Ristoscu, C., & Sima, G. (2015). The Influence of the Foaming Agents on the Porosity of the PM Hydroxyapatite-Based Biocomposites Processed by Two-Step Sintering. Advanced Materials Research, 1128, 178–186. https://doi.org/10.4028/www.scientific.net/amr.1128.178
  23. Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., & Mabuchi, M. (2004). Compressibility of porous magnesium foam: Dependency on porosity and pore size. Materials Letters, 58(3–4), 357–360. https://doi.org/10.1016/S0167-577X(03)00500-7
  24. Wolff, M., Blawert, C., Dahms, M., & Ebel, T. (2011). Properties of sintered Mg alloys for biomedical applications. Materials Science Forum, 690, 491–494. https://doi.org/10.4028/www.scientific.net/MSF.690.491
  25. Xia, X. C., Chen, X. W., Zhang, Z., Chen, X., Zhao, W. M., Liao, B., & Hur, B. (2013). Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys, 1(4), 330–335. https://doi.org/10.1016/j.jma.2013.11.006
  26. Yang, D. H., Hur, B. Y., & Yang, S. R. (2008). Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. Journal of Alloys and Compounds, 461(1–2), 221–227. https://doi.org/10.1016/j.jallcom.2007.07.098
  27. Zhuang, H., Han, Y., & Feng, A. (2008). Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Materials Science and Engineering C, 28(8), 1462–1466. https://doi.org/10.1016/j.msec.2008.04.001
  28. Kartika, I., Ashari, A. M., Trenggono, A., Lestari, F. P., Erryani, A. (2019). Analisis struktur pori dan sifat mekanik paduan Mg-0,5Ca-4Zn hasil proses metalurgi serbuk dengan variasi komposisi foaming agent CaCO3 dan temperatur sintering. Teknik, 40 (3), 142-148. https://doi.org/10.14710/teknik.v40n3.25327

Last update:

No citation recorded.

Last update:

No citation recorded.