skip to main content

Perbaikan Kualitas Energi Biomassa Kayu Jati Menggunakan Torefaksi Microwave Untuk Produksi Bioarang

*Lukas Kano Mangalla orcid  -  Department of Mechanical Engineering, Universitas Halu Oleo, Jl. HEA Mokodompit Anduonohu Kendari 93232 Indonesia, Indonesia
Raden Rinova Sisworo  -  Departemen Teknik Mesin Fakultas Teknik, Universitas Halu Oleo, Indonesia
Luther Pagiling  -  Departemen Teknik Elektro Fakultas Teknik, Universitas Halu Oleo, Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Abstract

Penelitian ini difokuskan untuk perbaikan kualitas biomassa limbah kayu jati melalui proses torefaksi microwave dan mengamati parameter penting untuk meningkatkan densitas energi dan energy efisiensi dari bahan baku dalam menghasilkan bioarang berkualitas. Pengujian ini dilakukan dalam sebuah tabung reaktor 250 mL yang diletakkan dalam pemanas microwave dengan mengalirkan gas inert dan non-inert. Pemanas microwave yang digunakan beroperasi pada frekuensi 2,45GHz dengan variasi daya masing-masing 540W, 720W, dan 900W. Selama proses torefaksi gas nitrogen (inert) dialirkan ke dalam reaktor dengan Laju 0,125 mL/min dan untuk media udara (non-inert) dialirkan secara alami. Pengamatan terhadap temperatur dalam reaktor dilakukan setiap kenaikan 0.5 menit selama 20 menit menggunakan termokopel Type-K. Perubahan massa dan sifat produk torefaksi diamati dan dianalisis untuk memprediksi korelasi kenaikan nilai kalor, massa dan energi tersisa dengan daya operasi pemanasan microwave. Hasil penelitian menunjukkan bahwa dengan meningkatnya daya operasi torefaksi microwave maka nilai kalor dan densitas energi bahan produk meningkat signifikan sedangkan massa sisa dan energi tersisa cenderung menurun. Media udara sangat potensial sebagai pengganti gas nitrogen yang mahal untuk melakukan torefaksi microwave biomassa kayu jati.

Fulltext View|Download
Keywords: bio-arang; energi tersisa; peningkatan energi; pemanas microwave; torefaksi
Funding: Riset Keilmuan Rispro LPDP (025/E4.1/AK.04.RA/2021 )

Article Metrics:

  1. Abymanyu, H., & Harsnan, S. (2014). Konversi Biomassa untuk Energi Alternatif di Indonesia. Konversi Biomassauntuk Energi Alternatifdi Indonesia:Tinjauan Sumber Daya,Teknologi, Manajemen,Dan Kebijakan, May, 13
  2. Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169–175. https://doi.org/10.1016/j.fuproc.2007.09.002
  3. Barontini, F., Biagini, E., & Tognotti, L. (2021). Influence of Torrefaction on Biomass Devolatilization. ACS Omega, 6(31), 20264–20278. https://doi.org/10.1021/acsomega.1c02141
  4. Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/C2011-0-07564-6
  5. Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. ttps://doi.org/10.1016/j.fuel.2007.05.041
  6. Chen, D., Chen, F., Cen, K., Cao, X., Zhang, J., & Zhou, J. (2020). Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel, 275(January), 117936. https://doi.org/10.1016/j.fuel.2020.117936
  7. Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J. S., Ho, S. H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887
  8. Dornburg, V., Faaij, A. P. C., & Meuleman, B. (2006). Optimising waste treatment systems. Part A: Methodology and technological data for optimising energy production and economic performance. Resources, Conservation and Recycling, 49(1), 68–88. https://doi.org/10.1016/j.resconrec.2006.03.004
  9. Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89–106. https://doi.org/10.1007/s12393-012-9048-x
  10. Gavrilescu, M. (2008). Biomass power for energy and sustainable development. Environmental Engineering and Management Journal, 7(5), 617–640. https://doi.org/10.30638/eemj.2008.086
  11. He, Q., Raheem, A., Ding, L., Xu, J., Cheng, C., & Yu, G. (2021). Combining wet torrefaction and pyrolysis for woody biochar upgradation and structural modification. Energy Conversion and Management, 243(June), 114383. https://doi.org/10.1016/j.enconman.2021.114383
  12. Kazagic, A., & Smajevic, I. (2009). Synergy effects of co-firing wooden biomass with Bosnian coal. Energy, 34(5), 699–707. https://doi.org/10.1016/j.energy.2008.10.007
  13. Kongkeaw, N., & Patumsawad, S. (2011). Thermal Upgrading of Biomass as a Fuel by Torrefaction. 17, 38–42
  14. Mohd Fuad, M. A. H., Hasan, M. F., & Ani, F. N. (2019). Microwave torrefaction for viable fuel production: A review on theory, affecting factors, potential and challenges. Fuel, 253(April), 512–526. https://doi.org/10.1016/j.fuel.2019.04.151
  15. Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317–330. https://doi.org/10.1016/j.rser.2013.08.008
  16. Natarajan, P., Suriapparao, D. V., & Vinu, R. (2018). Microwave torrefaction of Prosopis juliflora: Experimental and modeling study. Fuel Processing Technology, 172(October 2017), 86–96. https://doi.org/10.1016/j.fuproc.2017.12.007
  17. Nguyen, Q., Nguyen, D. D., He, C., & Bach, Q. V. (2021). Pretreatment of Korean pine (Pinus koraiensis) via wet torrefaction in inert and oxidative atmospheres. Fuel, 291(January), 119616. https://doi.org/10.1016/j.fuel.2020.119616
  18. Nhuchhen, D., Basu, P., & Acharya, B. (2014). A Comprehensive Review on Biomass Torrefaction. International Journal of Renewable Energy & Biofuels, 1–56. https://doi.org/10.5171/2014.506376
  19. Nhuchhen, D. R., & Basu, P. (2014). Experimental investigation of mildly pressurized torrefaction in air and nitrogen. Energy and Fuels, 28(5), 3110–3121. https://doi.org/10.1021/ef4022202
  20. Pentananunt, R., Rahman, A. N. M. M., & Bhattacharya, S. C. (1990). Upgrading of biomass by means of torrefaction. Energy, 15(12), 1175–1179. https://doi.org/10.1016/0360-5442(90)90109-F
  21. Poudel, J., Karki, S., & Oh, S. C. (2018). Valorization of waste wood as a solid fuel by torrefaction. Energies, 11(7). https://doi.org/10.3390/en11071641
  22. Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458–3470. https://doi.org/10.1016/j.energy.2006.03.008
  23. Pulka, J., Manczarski, P., Koziel, J. A., & Białowiec, A. (2019). Torrefaction of sewage sludge: Kinetics and fuel properties of biochars. Energies, 12(3), 1–10. https://doi.org/10.3390/en12030565
  24. Purnawarman, P., Nurchayati, N., & Padang, Y. A. (2015). Pengaruh Komposisi Briket Biomassa Kulit Kacang Tanah Dan Arang Tongkol Jagung Terhadap Karakteristik Briket. Dinamika Teknik Mesin, 5(2), 131–139. https://doi.org/10.29303/d.v5i2.38
  25. Salema, A. A., & Ani, F. N. (2011). Microwave induced pyrolysis of oil palm biomass. Bioresource Technology, 102(3), 3388–3395. https://doi.org/10.1016/j.biortech.2010.09.115
  26. Wijaya, A., Chrysolite, H., Ge, M., Wibowo, C. K., & Pradana, A. (2017). Executive Summary. World Resources Institute, September. https://wri-indonesia.org/sites/default/files/WRI Layout Paper OCN v7.pdf
  27. Yin, C. (2012). Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresource Technology, 120, 273–284. https://doi.org/10.1016/j.biortech.2012.06.016

Last update:

No citation recorded.

Last update: 2024-12-27 04:05:36

No citation recorded.