skip to main content

Hydrotreated Vegetable Oil From Palm Oil Sludge As A Equitable Energy Strategy For Transportation

Use of Hydrotreated Vegetable Oil from Palm Oil Sludge by Catalytic Hydrogenation Method as a Solution to Reduce Greenhouse Gas Emission

*Fariz Alfarizi  -  Fakultas teknologi industri,Departement teknik kimia ,universitas pertamina Jl. Teuku Nyak Arief, RT.7/RW.8, Simprug, Kec. Kby. Lama, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12220, Indonesia
Haris Mubarok  -  Program Studi Perminyakan, Fakultas Teknologi Eksplorasi dan Produksi, Universitas Pertamina, Indonesia
Ida Bagus Made Krishna Arinanda  -  Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Pertamina, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract
Indonesia sebagai produsen minyak sawit terbesar di dunia memiliki potensi besar dalam memanfaatkan lumpur sawit (SPO) untuk menghasilkan Hydrotreated Vegetable Oil (HVO). Penelitian ini mengeksplorasi peran HVO dari SPO sebagai solusi strategis dalam transisi energi yang adil, khususnya untuk sektor transportasi. Melalui proses hidrogenasi katalitik, HVO menawarkan pengurangan emisi Gas Rumah Kaca (GRK) hingga 80% dibandingkan bahan bakar fosil, sekaligus mendukung target energi terbarukan nasional. Inovasi ini tidak hanya mengurangi ketergantungan Indonesia terhadap impor bahan bakar fosil tetapi juga mendukung prinsip ekonomi sirkular. Pengembangan teknologi dan kebijakan yang tepat sangat dibutuhkan untuk memastikan keberlanjutan dan skala produksi HVO dari SPO.
Fulltext View|Download
Keywords: Hydrotreated Vegetable Oil, Sludge Palm Oil, equitable energy, biofuels, GHG emissions
Funding: Traction Energy Asia

Article Metrics:

  1. Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. In Renewable and Sustainable Energy Reviews (Vol. 16, Number 4, pp. 2070-2093). https://doi.org/10.1016/j.rser.2012.01.003
  2. Debler, E. W., Kaufmann, G. F., Meijler, M. M., Heine, A., Mee, J. M., Pljevaljčić, G., Di Bilio, A. J., Schultz, P. G., Millar, D. P., Janda, K. D., Wilson, I. A., Gray, H. B., & Lerner, R. A. (2008). Deeply inverted electron-hole recombination in a luminescent antibody-stilbene complex. Science, 319(5867), 1232-1235. https://doi.org/10.1126/science.1153445
  3. Fathurrahman, N. A., Ginanjar, K., Devitasari, R. D., Maslahat, M., Anggarani, R., Aisyah, L., Soemanto, A., Solikhah, M. D., Thahar, A., Wibowo, E., & Wibowo, C. S. (2024). Long-term storage stability of incorporated hydrotreated vegetable oil (HVO) in biodiesel-diesel blends at highland and coastal areas. Fuel Communications, 18, 100107. https://doi.org/10.1016/j.jfueco.2024.100107
  4. Gilani, N., Pasikhani, J. V., Motie, P. T., & Akbari, M. (2019). Fabrication of quantum Cu(Ii) nanodot decorated TiO 2 nanotubes by the photochemical deposition-assisted hydrothermal method: Study of catalytic activity in hydrogen generation. Desalination and Water Treatment, 139, 145-155. https://doi.org/10.5004/dwt.2019.23133
  5. Han, Y., Gholizadeh, M., Tran, C.-C., Kaliaguine, S., Li, C.-Z., Olarte, M., & Garcia-Perez, M. (2019). Hydrotreatment of Pyrolysis Bio-oil: A Review
  6. Hegedűs, T., Szenti, I., Efremova, A., Szamosvölgyi, Á., Baán, K., Kiss, J., & Kónya, Z. (2024). Hexagonal boron nitride fibers as ideal catalytic support to experimentally measure the distinct activity of Pt nanoparticles in CO2 hydrogenation. Heliyon, 10(21). https://doi.org/10.1016/j.heliyon.2024.e40078
  7. Hunicz, J., Mikulski, M., Shukla, P. C., & Gęca, M. S. (2022). Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation. Fuel, 307. https://doi.org/10.1016/j.fuel.2021.121910
  8. Idrus, A., Abdulkareem-Alsultan, G., Asikin-Mijan, N., Fawzi Nassar, M., Voon, L., Hwa Teo, S., Agustiono Kurniawan, T., Athirah Adzahar, N., Surahim, M., Zulaika Razali, S., Islam, A., Yunus, R., Alomari, N., & Hin Taufiq-Yap, Y. (2024). Deoxygenation of waste palm oil sludge into hydrocarbon rich fuel over carbon-supported bimetallic tungsten-lanthanum catalyst. Energy Conversion and Management: X, 23. https://doi.org/10.1016/j.ecmx.2024.100589
  9. Kourkoumpas, D.-S., Sagani, A., Vallianatos, A., Kiartzis, S., Karellas, S., Dedoussis, V., & Grammelis, P. (2024). Life cycle GHG emission reduction of hydrotreated vegetable oil integration in an industrial petroleum refinery. Green Technologies and Sustainability, 2(2), 100076. https://doi.org/10.1016/j.grets.2024.100076
  10. Lee, G., Jeong, Y., Kim, B. G., Han, J. S., Jeong, H., Na, H. Bin, & Jung, J. C. (2015). Hydrogen production by catalytic decalin dehydrogenation over carbon-supported platinum catalyst: Effect of catalyst preparation method. Catalysis Communications, 67, 40-44. https://doi.org/10.1016/j.catcom.2015.04.002
  11. Li, Y., & Williams, P. T. (2024). Catalytic steam reforming of waste tire pyrolysis volatiles using a tire char catalyst for high yield hydrogen-rich syngas. Fuel Processing Technology, 265. https://doi.org/10.1016/j.fuproc.2024.108150
  12. Mata, C., Cárdenas, D., Esarte, C., Soriano, J. A., Gómez, A., Fernández-Yáñez, P., García-Contreras, R., Sánchez, L., Nogueira, J. I., & Armas, O. (2023). Performance and regulated emissions from a Euro VI-D hybrid bus tested with fossil and renewable (hydrotreated vegetable oil) diesel fuels under urban driving in Bilbao city, Spain. Journal of Cleaner Production, 383. https://doi.org/10.1016/j.jclepro.2022.135472
  13. Millo, F., Jafari, M. J., Piano, A., Postrioti, L., Brizi, G., Vassallo, A., Pesce, F., & Fittavolini, C. (2025). A fundamental study of injection and combustion characteristics of neat Hydrotreated Vegetable Oil (HVO) as a fuel for light-duty diesel engines. Fuel, 379. https://doi.org/10.1016/j.fuel.2024.132951
  14. Mohd Yusof, M. A. Bin, Chan, Y. J., Chong, C. H., & Chew, C. L. (2023). Effects of operational processes and equipment in palm oil mills on characteristics of raw Palm Oil Mill Effluent (POME): A comparative study of four mills. Cleaner Waste Systems, 5. https://doi.org/10.1016/j.clwas.2023.100101
  15. Muanruksa, P., Winterburn, J., & Kaewkannetra, P. (2019). A novel process for biodiesel production from palm oil sludge. MethodsX, 6, 2838-2844. https://doi.org/10.1016/j.mex.2019.09.039
  16. Pongraktham, K., & Somnuk, K. (2023). Continuous double-step acid catalyzed esterification production of sludge palm oil using 3D-printed rotational hydrodynamic cavitation reactor. Ultrasonics Sonochemistry, 95. https://doi.org/10.1016/j.ultsonch.2023.106374
  17. Pongraktham, K., & Somnuk, K. (2024). Circulation process of methyl ester production from pretreated palm oil sludge using CaO/ABS catalytic static mixer coupled with an ultrasonic clamp. Ultrasonics Sonochemistry, 111. https://doi.org/10.1016/j.ultsonch.2024.107138
  18. Wu, D., He, Y., Lin, C., Li, B., Ma, J., Ruan, L., Feng, Y., Ban, C., Ding, J., Wang, X., Yu, D., Gan, L.-Y., & Zhou, X. (2024). Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution. Journal of Materiomics, 100959. https://doi.org/10.1016/j.jmat.2024.100959

Last update:

No citation recorded.

Last update: 2025-03-27 11:08:34

No citation recorded.