skip to main content

SEPARATED OPERATION STATE PADA MEDIUM ACCESS CONTROL DI JARINGAN IEEE 802.11AC

*Reza Firsansadaya Malik orcid scopus  -  Universitas Sriwijaya, Indonesia
Imam Mustofa  -  Universitas Sriwijaya, Indonesia
Dikirim: 18 Mar 2019; Diterbitkan: 14 Jun 2019.
Akses Terbuka Copyright (c) 2019 Transmisi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Penelitian ini membahas mengenai bagaimana algoritma Separated Operation States in Medium Access Control (SOSMAC) dapat mengatasi hidden node di jaringan Wireless Local Area Network (WLAN) IEEE 802.11ac dan menghindari collision. Skenario jaringan yang dibangun adalah menempatkan 100 node dengan toplogi grid 10 x 10 yang akan berkomunikasi dengan 4 node server dan menggunakan protokol routing Ad-hoc on Demand Distance Vector (AODV) dalam simulasi jaringan Network Simulator 3 (NS-3). Parameter yang digunakan sebagai acuan analisa pada penelitian ini adalah nilai throughput, packet loss, dan packet delivery ratio. Hasil simulasi SOSMAC yang diperoleh dibandingkan dengan algoritma standar komunikasi yang sudah umum pada jaringan nirkabel yaitu Medium Access Contol Access (MACA).  Hasil perbandingan yang diperoleh adalah nilai rata-rata throughput 6,061 Kbps, packet loss 0,41%, dan Packet Delivery Ratio (PDR) 99,58% yang didapatkan dari algoritma SOSMAC sedangkan pada algoritma MACA diperoleh hasil throughput 5,681 Kbps, packet loss 7,00%, dan Packet Delivery Ratio (PDR) 93,00%.  Oleh karena itu, perbandingan hasil tersebut menunjukkan bahwa algoritma SOSMAC lebih baik dari algoritma MACA dalam mengatasi hidden node dan collision.
Fulltext View|Download
Kata Kunci: Algoritma SOSMAC; Algoritma MACA; AODV; Ad-hoc Grid; NS-3

Article Metrics:

  1. T. Sanada, X. Tian, T. Okuda, and T. Ideguchi, “Estimating the Number of Nodes in WLANs to Improve Throughput and QoS,” no. 1, pp. 10–20, 2016
  2. H. A. Omar and K. Abboud, “A Survey on High Efficiency Wireless Local Area Networks : Next Generation WiFi,” no. c, 2016
  3. R. Karmakar, S. Chattopadhyay, and S. Chakraborty, “Impact of IEEE 802.11n/ac PHY/MAC High Throughput Enhancements on Transport and Application Protocols-A Survey,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2050–2091, 2017
  4. C. Badenhop, J. Fuller, and B. Ramsey, “Efficacy of physical layer preamble manipulation for IEEE 802.11a/ac,” Electron. Lett., vol. 52, no. 8, pp. 669–671, 2016
  5. P. K. Esubonteng and R. Rojas-cessa, “SOSMAC : Separated Operation States in Medium Access Control for Emergency Communications on IEEE 802 . 11-like Crowded Networks,” 2017
  6. A. S. AL-Khaleefa, M. R. Ahmad, R. C. Muniyandi, R. F. Malik, and A. A. M. Isa, “Optimized authentication for wireless body area network,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 137–142, 2018
  7. H. Qin, R. Zhang, B. Li, and L. Cai, “Distributed cooperative MAC for wireless networks based on network coding,” 2015 IEEE Wirel. Commun. Netw. Conf. WCNC 2015, pp. 2050–2055, 2015
  8. Yu Wang and J. J. Garcia-Luna-Aceves, “Performance of collision avoidance protocols in single-channel ad hoc networks,” 10th IEEE Int. Conf. Netw. Protoc. 2002. Proceedings., pp. 68–77, 2002
  9. N. Lebedev and J. G. Orce, “Multiband CSMA / CA with RTS-CTS Strategy,” pp. 628–633, 2014
  10. I. Selinis, “Performance study of 802 . 11n WLAN and MAC enhancements in ns-3,” 2014
  11. R. F. Malik, M. S. Nurfatih, H. Ubaya, R. Zulfahmi, and E. Sodikin, “Evaluation of greedy perimeter stateless routing protocol on vehicular ad hoc network in palembang city,” Proc. 2017 Int. Conf. Data Softw. Eng. ICoDSE 2017, vol. 2018–January, pp. 1–5, 2018
  12. M. Amadeo, C. Campolo, and A. Molinaro, “Forwarding strategies in named data wireless ad hoc networks : Design and evaluation,” J. Netw. Comput. Appl., pp. 1–11, 2014
  13. L. Kulkarni, “QoS Parameter Analysis on AODV and DSDV Protocols in a Wireless Network,” no. 1, pp. 62–70, 2011
  14. K. Zafar, S., Tariq, H., & Manzoor, “Throughput and Delay Analysis of AODV, DSDV and DSR Routing Protocols in Mobile Ad Hoc Networks.,” Int. J. Comput. Networks Appl., vol. 3, no. 2, pp. 1–7, 2016
  15. Y. Yao, K. Zhang, and X. Zhou, “A Flexible Multi-Channel Coordination MAC Protocol for Vehicular Ad Hoc Networks,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1305–1308, 2017
  16. D. N. M. Dang, V. D. Nguyen, H. T. Le, C. S. Hong, and J. Choe, “An efficient multi-channel MAC protocol for wireless ad hoc networks,” Ad Hoc Networks, vol. 44, pp. 46–57, 2016
  17. S. Kumar, V. S. Raghavan, and J. Deng, “Medium access control protocols for ad hoc wireless networks: A survey,” Ad Hoc Networks, vol. 4, no. 3, pp. 326–358, 2006
  18. H. Wu, S. Cheng, Y. Peng, K. Long, and J. Ma, “IEEE 802 . 11 Distributed Coordination Function ( DCF ): Analysis and Enhancement *,” vol. 00, no. C, pp. 0–4, 2002
  19. P. Karn, “MACA - A New Channel Access Method for Packet Radio.” pp. 134–140, 1990
  20. J. Tourrilhes, “Packet Frame Grouping : Improving IP multimedia performance over CSMA/CA,” pp. 1–6

Last update:

No citation recorded.

Last update: 2024-12-26 23:08:07

No citation recorded.