skip to main content

PREDIKSI KATA KASAR BERBAHASA INDONESIA MENGGUNAKAN MACHINE LEARNING BERBASIS MOBILE INFRASTRUCTURE

Puri Sulistiyawati  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
*Farrikh Alzami scopus  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Dwi Puji Prabowo  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Ricardus Anggi Pramunendar  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Rama Aria Megantara  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Nuanza Purinsyira  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Enrico Irawan  -  Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
Dikirim: 21 Nov 2021; Diterbitkan: 19 Mei 2022.
Akses Terbuka Copyright (c) 2022 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Komentar kasar dan menyinggung dapat dijelaskan sebagai komunikasi yang bertujuan membuat satu atau lebih individu untuk berlaku marah. Oleh karena itu, diperlukan sebuah pendekatan untuk mengetahui apakah kalimat komentar yang akan ditulis merupakan komentar kasar atau bukan.  Kemudian, melihat dari keseharian penduduk Indonesia yang tidak terlepas dari smartphone, memberikan peluang untuk memberikan edukasi kepada pengguna smartphone bagaimana mendeteksi komentar kasar. Maka, pengembangan aplikasi berbasis android perlu dikembangkan. Penelitian ini bertujuan mengembangkan aplikasi mobile sentimen analisis deteksi kata kasar menggunakan TF-IDF sebagai fitur ekstraksi dan Naïve Bayes berbasis android flutter yang intuitif. Hasil pengujian menunjukkan nilai training akurasi 98%, training recall 98%, training precision 99%, testing accuracy 84.26%, testing recall 86.81%, dan testing precission 83.15%. Dengan demikian, aplikasi ini telah dapat memberikan prediksi yang baik sesuai harapan.
Fulltext View|Download
Kata Kunci: hate speech detection, android
Pemberi dana: Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Dian Nuswantoro

Article Metrics:

  1. D. Smit, “Cyberbullying in South African and American schools: A legal comparative study,” South African J. Educ., vol. 35, no. 2, pp. 1–11, May 2015, doi: 10.15700/saje.v35n2a1076
  2. R. Pelle, C. Alcântara, and V. P. Moreira, “A classifier ensemble for offensive text detection,” WebMedia 2018 - Proc. 24th Brazilian Symp. Multimed. Web, pp. 237–243, 2018, doi: 10.1145/3243082.3243111
  3. R. Zhao, A. Zhou, and K. Mao, “Automatic detection of cyberbullying on social networks based on bullying features,” in Proceedings of the 17th International Conference on Distributed Computing and Networking - ICDCN ’16, 2016, pp. 1–6, doi: 10.1145/2833312.2849567
  4. J. H. Park and P. Fung, “One-step and Two-step Classification for Abusive Language Detection on Twitter,” pp. 41–45, Jun. 2017, doi: 10.18653/v1/w17-3006
  5. C. Jefferson, H. Liu, and M. Cocea, “Fuzzy approach for sentiment analysis,” in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2017, pp. 1–6, doi: 10.1109/FUZZ-IEEE.2017.8015577
  6. P. Burnap and M. L. Williams, “Cyber Hate Speech on Twitter: An Application of Machine Classification and Statistical Modeling for Policy and Decision Making,” Policy & Internet, vol. 7, no. 2, pp. 223–242, Jun. 2015, doi: 10.1002/poi3.85
  7. K. Simon, “DIGITAL 2021: INDONESIA,” 2021. https://datareportal.com/reports/digital-2021-indonesia
  8. B. Agarwal, N. Mittal, P. Bansal, and S. Garg, “Sentiment Analysis Using Common-Sense and Context Information,” Comput. Intell. Neurosci., vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/715730
  9. F. Elghannam, “Text representation and classification based on bi-gram alphabet,” J. King Saud Univ. - Comput. Inf. Sci., Jan. 2019, doi: 10.1016/j.jksuci.2019.01.005
  10. T. Chalothorn and J. Ellman, “Simple approaches of sentiment analysis via ensemble learning,” in Lecture Notes in Electrical Engineering, vol. 339, 2015, pp. 631–639
  11. L. Peng, G. Cui, M. Zhuang, and C. Li, “Working Paper Series,” Account. Financ., vol. 24, no. 1, pp. 75–75, 2009, doi: 10.1111/j.1467-629x.1984.tb00054.x
  12. K. Khan, B. Baharudin, A. Khan, and A. Ullah, “Mining opinion components from unstructured reviews: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 26, no. 3, pp. 258–275, Sep. 2014, doi: 10.1016/j.jksuci.2014.03.009
  13. D. M. E.-D. M. Hussein, “A survey on sentiment analysis challenges,” J. King Saud Univ. - Eng. Sci., vol. 30, no. 4, pp. 330–338, Oct. 2018, doi: 10.1016/j.jksues.2016.04.002
  14. F. Xie, X. Wu, and X. Zhu, “Efficient sequential pattern mining with wildcards for keyphrase extraction,” Knowledge-Based Syst., vol. 115, pp. 27–39, Jan. 2017, doi: 10.1016/j.knosys.2016.10.011
  15. L. H. Lee, D. Isa, W. O. Choo, and W. Y. Chue, “High Relevance Keyword Extraction facility for Bayesian text classification on different domains of varying characteristic,” Expert Syst. Appl., vol. 39, no. 1, pp. 1147–1155, Jan. 2012, doi: 10.1016/j.eswa.2011.07.116
  16. F. Figueiredo, L. Rocha, T. Couto, T. Salles, M. A. Gonçalves, and W. Meira Jr., “Word co-occurrence features for text classification,” Inf. Syst., vol. 36, no. 5, pp. 843–858, Jul. 2011, doi: 10.1016/j.is.2011.02.002
  17. B. C. Gencosman, H. C. Ozmutlu, and S. Ozmutlu, “Character n-gram application for automatic new topic identification,” Inf. Process. Manag., vol. 50, no. 6, pp. 821–856, Nov. 2014, doi: 10.1016/j.ipm.2014.06.005
  18. M. S. Saputri, R. Mahendra, and M. Adriani, “Emotion Classification on Indonesian Twitter Dataset,” in 2018 International Conference on Asian Language Processing (IALP), Nov. 2018, pp. 90–95, doi: 10.1109/IALP.2018.8629262
  19. M. O. Ibrohim and I. Budi, “A Dataset and Preliminaries Study for Abusive Language Detection in Indonesian Social Media,” Procedia Comput. Sci., vol. 135, pp. 222–229, 2018, doi: 10.1016/j.procs.2018.08.169
  20. M. O. Ibrohim and I. Budi, “Multi-label Hate Speech and Abusive Language Detection in Indonesian Twitter,” in Proceedings of the Third Workshop on Abusive Language Online, 2019, pp. 46–57, doi: 10.18653/v1/W19-3506
  21. I. Alfina, R. Mulia, M. I. Fanany, and Y. Ekanata, “Hate speech detection in the Indonesian language: A dataset and preliminary study,” in 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Oct. 2017, pp. 233–238, doi: 10.1109/ICACSIS.2017.8355039
  22. R. Hendrawan, Adiwijaya, and S. Al Faraby, “Multilabel Classification of Hate Speech and Abusive Words on Indonesian Twitter Social Media,” in 2020 International Conference on Data Science and Its Applications (ICoDSA), Aug. 2020, pp. 1–7, doi: 10.1109/ICoDSA50139.2020.9212962

Last update:

No citation recorded.

Last update: 2024-05-22 04:22:54

No citation recorded.