Effects of Comparison of Feed Composition, pH, and Preliminary Treatment of Biogas Production from Cow Blood Waste and Molasses
DOI: https://doi.org/10.14710/9.1.11-19
Abstract
Keywords
Full Text:
PDFReferences
Azzuni, A., & Breyer, C. (2018). Energy security and energy storage technologies. Energy Procedia, 155, 237–258. https://doi.org/10.1016/j.egypro.2018.11.053
Chen, G. Q., & Wu, X. F. (2017). Energy overview for globalized world economy: Source, supply chain and sink. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 735–749). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.11.151
Chen, L., & Neibling, H. (2014). Anaerobic digestion basics. University of Idaho Extension.
David Broughton, A. (2009). Hydrolysis and Acidogenesis of Farm Dairy Effluent for Biogas Production at Ambient Temperatures. Massey University.
Dioha, I. J., Ikeme, C. H., Nafi’u, T., Soba, N. I., & Yusuf, M. B. S. (2013). EFFECT OF CARBON TO NITROGEN RATIO ON BIOGAS PRODUCTION I. J. Dioha, C.H. Ikeme, T. Nafi’u, N. I. Soba and Yusuf M.B.S. Energy Commission of Nigeria, Plot 701c, PMB 358, Central Area, Garki, Abuja, Nigeria. International Research Journal of Natural Sciences, 1(3), 1–10.
Divya, D., Gopinath, L. R., & Merlin Christy, P. (2015). A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 690–699). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.055
Fifendy, M., Eldini, E., & Irdawati, I. (2013). Pengaruh Pemanfaatan Molase Terhadap Jumlah Mikroba dan Ketebalan Nata Pada Teh Kombucha. Prosiding SEMIRATA 2013, 1(1).
Gamayanti, K. N., Pratiwiningrum, A., & Yusiati, L. M. (2012). PENGARUH PENGGUNAAN LIMBAH CAIRAN RUMEN DAN LUMPUR GAMBUT SEBAGAI STARTER DALAM PROSES FERMENTASI METANOGENIK. Buletin Peternakan, 36(1), 32. https://doi.org/10.21059/buletinpeternak.v36i1.1274
Jaelani, A., Firdaus, S., & Jumena, J. (2017). Renewable energy policy in Indonesia: The Qur’anic scientific signals in Islamic economics perspective. International Journal of Energy Economics and Policy, 7(4), 193–204.
Jin, W., Xu, X., Yang, F., Li, C., & Zhou, M. (2018). Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure. Biomass and Bioenergy, 115, 120–129. https://doi.org/10.1016/j.biombioe.2018.05.001
Kadam, R., & Panwar, N. L. (2017). Recent advancement in biogas enrichment and its applications. In Renewable and Sustainable Energy Reviews (Vol. 73, pp. 892–903). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.01.167
Koszel, M., & Lorencowicz, E. (2015). Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004
Langone, M., Ferrentino, R., Freddi, F., & Andreottola, G. (2019). Anaerobic digestion of blood serum water integrated in a valorization process of the bovine blood treatment. Biomass and Bioenergy, 120(November 2018), 1–8. https://doi.org/10.1016/j.biombioe.2018.10.015
Lee, D. H., Behera, S. K., Kim, J. W., & Park, H. S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Management, 29(2), 876–882. https://doi.org/10.1016/j.wasman.2008.06.033
Liu, C.-F., Yuan, X.-Z., Zeng, G.-M., Li, W.-W., & Li, J. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 99, 882–888. https://doi.org/10.1016/j.biortech.2007.01.013
Łochyńska, M., & Frankowski, J. (2018). The biogas production potential from silkworm waste. Waste Management, 79, 564–570. https://doi.org/10.1016/j.wasman.2018.08.019
Montañés, R., Pérez, M., & Solera, R. (2014). Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of pH control. Chemical Engineering Journal, 255, 492–499. https://doi.org/10.1016/j.cej.2014.06.074
Moset, V., Xavier, C. de A. N., Feng, L., Wahid, R., & Møller, H. B. (2018). Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. Journal of Cleaner Production, 172, 1391–1398. https://doi.org/10.1016/j.jclepro.2017.10.173
Nosratpour, M. J., Karimi, K., & Sadeghi, M. (2018). Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. Journal of Environmental Management, 226, 329–339. https://doi.org/10.1016/j.jenvman.2018.08.058
Rahardjo, P. (2010). Sistem Pengendali Temperatur Untuk Proses Pasteurisasi Alat-Alat Medis. Jurnal Teknologi Elektro, 9(1), 107.
Ralph, N., & Hancock, L. (2019). Energy security, transnational politics, and renewable electricity exports in Australia and South east Asia. Energy Research and Social Science, 49, 233–240. https://doi.org/10.1016/j.erss.2018.10.023
Sa’adah, A. F., Fauzi, A., & Juanda, B. (2017). Peramalan Penyediaan dan Konsumsi Bahan Bakar Minyak Indonesia dengan Model Sistem Dinamik. Jurnal Ekonomi Dan Pembangunan Indonesia, 17(2), 118. https://doi.org/10.21002/jepi.v17i2.661
Sarteshnizi, F. R., Seifdavati, J., Abdi-benemar, H., Salem, A. Z. M., Sharifi, R. S., & Mlambo, V. (2018). The potential of rumen fluid waste from slaughterhouses as an environmentally friendly source of enzyme additives for ruminant feedstuffs. Journal of Cleaner Production, 195, 1026–1031. https://doi.org/10.1016/j.jclepro.2018.05.268
Schlüter, A., Bekel, T., Diaz, N. N., Dondrup, M., Eichenlaub, R., Gartemann, K. H., Krahn, I., Krause, L., Krömeke, H., Kruse, O., Mussgnug, J. H., Neuweger, H., Niehaus, K., Pühler, A., Runte, K. J., Szczepanowski, R., Tauch, A., Tilker, A., Viehöver, P., & Goesmann, A. (2008). The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. Journal of Biotechnology, 136(1–2), 77–90. https://doi.org/10.1016/j.jbiotec.2008.05.008
Takizawa, S., Baba, Y., Tada, C., Fukuda, Y., & Nakai, Y. (2018). Pretreatment with rumen fluid improves methane production in the anaerobic digestion of paper sludge. Waste Management, 78, 379–384. https://doi.org/10.1016/j.wasman.2018.05.046
Westerholm, M., Müller, B., Arthurson, V., & Schnürer, A. (2011). Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes and Environments, 26(4), 347–353. https://doi.org/10.1264/jsme2.ME11123
Wiratmana, I. P. A., Sukadana, I. G. K., Ngurah, I. G., Tenaya, P., & Belakang, L. (2012). Studi Eksperimental Pengaruh Variasi Bahan Kering Terhadap Produksi dan Nilai Kalor Biogas Kotoran Sapi. Jurnal Energi Dan Manufaktur, 5(1), 22–32.
Yan, Z., Song, Z., Li, D., Yuan, Y., Liu, X., & Zheng, T. (2015). The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology, 177, 266–273. https://doi.org/10.1016/j.biortech.2014.11.089
Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z., & Ruan, W. (2015). Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. International Biodeterioration and Biodegradation, 105, 153–159. https://doi.org/10.1016/j.ibiod.2015.09.005
Yani, M., & Darwis, A. A. (1990). Diktat Teknologi Biogas. Pusat Antar Universitas Bioteknologi-IPB. Bogor.
Zulkarnaen, I. ., Tira, H. ., & Padang, Y. . (2018). Pengaruh Rasio Karbon Dan Nitrogen ( C/N Ratio ) Pada Kotoran Sapi Terhadap Produksi Biogas Dari Proses Anaerob. 1–16.
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.