The Effect of Sawdust Concentration on Biogas Production from Chicken Dung in Anaerobic Co-Digestion

Budiyono Budiyono, Andrew Christian Timothy Prasetyo, Grace Sheilla Kristiani Handoko, Hashfi Hawali Abdul Matin


DOI: https://doi.org/10.14710/10.2.%25p

Abstract


Resources of oil and natural gas which are derived from fossil energy are wane more and more. One of the research of alternative energy are the production of biogas. Biogas is formed when organic material is degraded by microorganisms in anerobic conditions. Biogas consists of methane gas (50-70%), carbon dioxide (30-50%), and also includes small amounts of other compounds such as hydrogen sulfide (H2S), nitrogen gas (N2) and water vapor. The purpose of this study is to examine the effect of pretreatment on the biogas yield produced, examine the effect of adding nutrients to the biogas yield produced, and examine the effect of the C/N ratio value on the biogas yield produced. Anaerobic fermentation is a series of biological processes that convert organic matter into CH4 and CO2 and also convert S compounds to H2S in the absence of oxygen (O2) by anaerobic microorganisms consisting of four primary stages. In biogas production research, the variables used are the C/N ratio, pretreatment of raw materials, and the addition of nutrients. This research includes three processes, there are the preparation process, the operation process, and the result analysis. It is known that chemical pretreatment using acids results in greater biogas products. Then, the results were obtained that biogas with C/N 30 produced more biogas products. The liquid state (L-AD) method produces more biogas than the solid state (SS-AD) method. The HCl pretreatment variable with C/N ratio of 30, and TS 10% produces the largest kinetics rate compared to other variables.

Keywords


Biogas, Chicken Dung, Sawdust, Anaerobic Co-Digestion

Full Text:

PDF

References


Ali, S., Hua, B., Jeanne, J., Bioresource Technology E ff ect of di ff erent initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresource Technology, 289(May),121579. https://doi.org/10.1016/j.biortech.2019.121579

Billah, M. (n.d.). Bahan Bakar Alternatif Padat (Bbap) Serbuk.

Djaja, W., Suwardi, N. K., & Salman, L. B. (2006). Pengaruh Imbangan Kotoran Sapi Perah dan Serbuk Gergaji Kayu Albizia terhadap Kandungan Nitrogen , Fosfor , Dan Kalium Serta Nilai C : N Ratio Kompos. Jurnal Ilmu Ternak, 6(2), 87–90.

Ihsan, A., Bahri, S., & Musafira. (2013). Produksi biogas menggunakan cairan isi rumen sapi dengan limbah cair tempe. Online Jurnal of Natural Science, 2(2), 27–35.

Irawan, D., & Khudori, A. (2015). Pengaruh Suhu Anaerobik Terhadap Hasil Biogas Menggunakan Bahan Baku Limbah Kolam Ikan Gurame. Turbo : Jurnal Program Studi Teknik Mesin, 4(1), 17–22. https://doi.org/10.24127/trb.v4i1.3

Natalyn, Fabiola, Dwi Nugraha, Winardi. (2017). Studi Pengaruh Metode L-Ad (Liquid Anaerobic Digestion) Dan Ss- Ad (Solid-State Anaerobic Digestion) Terhadap Produksi Biogas Daun Eceng Gondok (Eichhornia crassipes). 6(3), 1–10.

Nuhardin, I. (2018). Kualitas Limbah Serbuk Gergaji Untuk Arang Yang Diperoleh Dengan Metode Pirolisis Lambat. Turbo : Jurnal Program Studi Teknik Mesin, 7(2), 166–173. https://doi.org/10.24127/trb.v7i2.810

Pertiwiningrum, I. A. (2012). Instalasi Biogas. In עלון הנוטע (Vol. 66).

Purnomo, E. A. E. S. S. S. (2019). Pengaruh Variasi C/N Rasio Terhadap Produksi Kompos Dan Kandungan Kalium (K), Pospat (P) Dari Batang Pisang Dengan Kombinasi Kotoran Sapi Dalam Sistem Vermicomposting. Journal of Chemical Information and Modeling, 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.0 04

Ratnaningsih, R., Widyatmoko, H., & Yananto, T. (2009). Potensi pembentukan biogas pada proses biodegradasi campuran sampah organik segar dan kotoran sapi dalam batch reaktor anaerob. Jurnal Teknologi Lingkungan Universitas Trisakti, 5(1), 19–26.

Saputra, T., Triatmojo, S., & Pertiwiningrum, A. (2010). Produksi biogas dari campuran feses sapi dan ampas tebu (Buletin Peternakan) 34(2), 114–122.

Sarlinda, F., Sarto, S., & Hidayat, M. (2018). Kinerja dan kinetika produksi biohidrogen secara batch dari sampah buah melon dalam reaktor tangki berpengaduk. Jurnal Rekayasa Proses, 12(1), 32. https://doi.org/10.22146/jrekpros.33611 Scarlat, N.,

Dallemand, J. F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472. https://doi.org/10.1016/j.renene.2018.03.006

Triakuntini, E., Sudarno, & Sutrisno, E. (2011). Pengaruh Pengenceran Dan Pengadukan Pada Produksi Biogas Dari Limbah Rumah Makan Dengan Menggunakan Starter Ekstrak Rumen Sapi.

Wang, H., Larson, R. A., & Runge, T. (2019). Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems. Bioresource Technology Reports, 7(May),100232. https://doi.org/10.1016/j.biteb.2019.100232

Wiratmana, I., Sukadana, I., & Tenaya, I. (2012). Studi Eksperimental Pengaruh Variasi Bahan Kering Terhadap Produksi dan Nilai Kalor Biogas Kotoran Sapi. Jurnal Energi Dan Manufaktur, 5(1), 22–32.

Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001




Published by Waste Resources Research Center (WRRC), Diponegoro University - Indonesia
   
 
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.