Sustainable Batik Wastewater Treatment using Advanced PVDF/NiFe@SiO2 Nanocomposite Photocatalytic Membrane
DOI: https://doi.org/10.14710/11.2.112-119
Abstract
The primary concern associated with the Batik industry lies in the presence of pollutant dyes that contribute to environmental contamination. Addressing this issue involves exploring various wastewater treatment methods, with membrane technology being a viable approach. In this study, a photocatalytic material, NiFe@SiO2, synthesized through the sol-gel technique, was incorporated into a PVDF membrane. Characterization results from SEM surface, indicated that the PVDF/NiFe@SiO2 membrane displayed superior characteristics compared to other membranes. The addition of the NiFe@SiO2 photocatalyst increased membrane porosity, hydrophilicity, water absorption capacity, and affinity towards water molecules. The PVDF/NiFe@SiO2 membrane exhibited enhanced performance in terms of permeate flux, pollutant rejection, stability, recyclability, and durability. Notably, the fabricated photocatalytic membrane demonstrated superior antifouling performance and flux recovery capability when operating under UV radiation. The study also delved into the influence of wastewater pretreatment on antifouling membrane performance. The modified membrane successfully reduced fouling levels on the membrane by enhancing FRR from ~70% to ~90%. This insight into how pretreatment affects the antifouling properties of wastewater opens avenues for innovative solutions and enhanced design strategies to improve the efficiency and sustainability of wastewater treatment processes. Future research endeavors could focus on maximizing the potential of the bentonite adsorbent in wastewater pretreatment and exploring the full capabilities of the NiFe@SiO2 photocatalyst in enhancing the photocatalytic and antifouling performance of the membrane.
Keywords
Full Text:
PDFReferences
References
Sharfan, N., Shobri, A., Anindria, F.A., Mauricio, R., Tafsili, M.A.B., dan Slamet. (2018). Treatment of Batik Industry Waste with a Combination of Electrocoagulation and Photocatalysis. International Journal of Technology. 9(5): 936-943.
Birgani, P. M., Ranjbar, N., Abdullah, R. C., Wong, K. T., Lee, G., Ibrahim, S., Park, C., Yoon, Y., & Jang, M. (2016). An Efficient and Economical Treatment for Batik Textile Wastewater Containing High Levels of Silicate and Organic Pollutants Using a Sequential Process of Acidification, Magnesium Oxide, and Palm Shell-Based Activated Carbon Application. Journal of Environmental Management. 184: 229–239. https://doi.org/10.1016/j.jenvman.2016.09.066
Sutisna, S., Wibowo, E., Rokhmat, M., Rahman, D. Y., Murniati, R., Khairurrijal, K., & Abdullah, M. (2017). Batik Wastewater Treatment Using TiO2 Nanoparticles Coated on the Surface of Plastic Sheet. Procedia Engineering. 170: 78–83. https://doi.org/10.1016/j.proeng.2017.03.015
Budiyanto, S., Purnaweni, H., & Sunoko, H. R. (2018). Environmental analysis of the impacts of batik waste water polution on the quality of dug well water in the batik industrial center of Jenggot Pekalongan City. In E3S Web of Conferences (Vol. 31, p. 09008). EDP Sciences.
Azha, S. F. & Ismail S. (2021). Feasible and Economical Treatment of Real Hand-Drawn Batik/Textile Effluent Using Zwitterionic Adsorbent Coating: Removal Performance and Industrial Application Approach. Journal of Water Process Engineering. 41 (102093). https://doi.org/10.1016/j.jwpe.2021.102093
Mukimin A., Vistanty H., Zen N., Purwanto, A., & Wicaksono K.A. (2018). Performance of Bioequalizationelectrocatalytic Integrated Method for Pollutants Removal of Hand-Drawn Batik Wastewater. Journal of Water Process Engineering. 21: 77-83. https://doi.org/10.1016/j.jwpe.2017.12.004
Dwisandi, R. F., Mutiara, F., Nurfauziah, E., & Meylani, V. (2021). Review effectiveness of indigenous local microorganisms in degrading hexavalent chromium (Cr (VI)) in Batik liquid waste. Biological Environment and Pollution, 1(1), 19-29.
Daud, N. M., Abdullah, S. R. S., Hasan, H. A., & Dhokhikah, Y. (2022). Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Science of The Total Environment, 819, 152931.
Febriasari, A., Huriya, Ananto, A. H., Suhartini, M., & Kartohardjono, S. (2021). Polysulfone–polyvinyl pyrrolidone blend polymer composite membranes for batik industrial wastewater treatment. Membranes, 11(1), 66.
Kuvarega, A. T., & Mamba, B. B. (2016). Photocatalytic Membranes for Efficient Water Treatment. Semiconductor Photocatalysis - Materials, Mechanisms and Applications. InTech. https://doi.org/10.5772/62584
Notodarmodjo, S., Gustiani, S., Radiman, C., & Syafila, M. (2016). Pengaruh Fouling pada Permukaan Membran Serat Nano Selulosa Bakterial Dengan Fotokatalis Ag dan TiO2. Arena Tekstil, 31(1), 35–42. https://doi.org/10.31266/at.v31i1.1445
Alyarnezhad, S., Marino, T., Parsa, J. B., Galiano, F., Ursino, C., Garcìa, H., Puche, M., & Figoli, A. (2020). Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal Under Visible Light Irradiation. Polymers, 12(7), 1–19. https://doi.org/10.3390/polym12071509
Kusworo, T. D., Dalanta, F., Aryanti, N., & Othman N. H. (2021). Intensifying Separation and Antifouling Performance of PSf Membrane Incorporated by GO and ZnO Nanoparticles for Petroleum Refinery Wastewater Treatment. Journal of Process Engineering. 41 (102030).
Feng, H., Xu, H., Feng, H., Gao, Y., & Jin, X. (2019). The Sol-Gel Synthesis and Photocatalytic Activity of Gd-SiO2-TiO2 Photocatalyst. Chemical Physics Letters. 733: 136676.
Kusworo, T. D., Aryanti, N., Qudratun, & Utomo, D. P. (2018). Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process. Chemical Engineering Journal, 347, 462–471. https://doi.org/10.1016/j.cej.2018.04.136
Estikarini, H. D., Hadiwidodo, M., & Luvita, V. (2016). Penurunan Kadar COD dan TSS pada Limbah Tekstil dengan Metode Ozonasi. Jurnal Teknik Lingkungan, Vol 5, No. 1.
El-Zahhar, A. A., Idris, A. M., Fawy, K. F., & Arshad, M. (2021). SEM, SEM-EDX, µ-ATR-FTIR and XRD for urban street dust characterisation. International journal of environmental analytical chemistry, 101(7), 988-1006.
Humairo, F. Y. (2015). Preparasi dan Karakterisasi Membran Serat Berongga PVDF/PEG400-TiO2 untuk Pemisahan Limbah Sintetik Air-Minyak. Doctoral Dissertation. Institut Teknologi Sepuluh Nopember.
Sanjaya, H. (2017). Degradasi Methylene Blue Menggunakan Katalis Zno-Peg Dengan Metode Fotosonolisis. Eksakta: Berkala Ilmiah Bidang MIPA (E-ISSN: 2549-7464). 18(02): 21-29.
Cheng, S., Zhao, S., Xing, B., Liu, Y., Zhang, C., & Xia, H. (2022). Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis. Journal of Cleaner Production, 348, 131301.
Kusworo, T.D., Andri C. K., Nita A., Tonni A. K., Febio D., Nur H. A. (2023). Photocatalytic polysulfone membrane incorporated by ZnO-MnO2@SiO2 composite under UV light irradiation for the reliable treatment of natural rubber-laden wastewater. Chemical Engineering Journal. 451: 1. https://doi.org/10.1016/j.cej.2022.138593
Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., Li, J., Qian, X., Li, C., & Fan, J. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science. 520: 281–293. https://doi.org/10.1016/j.memsci.2016.07.060
Pophali, G. R., Hedau, S., Gedam, N., Rao, N. N., & Nandy, T. (2011). Treatment of refractory organics from membrane rejects using ozonation. Journal of Hazardous Materials, 189(1–2), 273–277. https://doi.org/10.1016/j.jhazmat.2011.02.030
Yuan, Y and Lee, T. R. (2013). Contact Angle and Wetting Properties, Surface Science Techniques. Springer, 3–34.
Psaltou, S., & Zouboulis, A. (2020). Catalytic ozonation and membrane contactors—a review concerning fouling occurrence and pollutant removal. Water (Switzerland), 12(11), 1–34. https://doi.org/10.3390/w12112964
Dewanti, B. S. D., Prastiwi, T. F., & Sutan Haji, A. T. (2019). Pengolahan Limbah Cair Batik Menggunakan Kombinasi Metode Netralisasi Dan Elektrokoagulasi. Jurnal Rekayasa Dan Manajemen Agroindustri, 7(3), 358. https://doi.org/10.24843/jrma.2019.v07.i03.p03
Andrunik, M., Tomasz Bajda. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12 (22): 3772. https://doi.org/10.3390/ma12223772
Chen, N., Chen, S., Yin, H., Zhu, B., Liu, M., Yang, Y., ... & Wei, G. (2023). Durable underwater super-oleophobic/super-hydrophilic conductive polymer membrane for oil-water separation. Water Research, 243, 120333.
Yang, F., Huang, J., Deng, L., Zhang, Y., Dang, G., & Shao, L. (2022). Hydrophilic modification of poly (aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 1-20.
Sutrisna, P. D., Kurnia, K. A., Siagian, U. W., Ismadji, S., & Wenten, I. G. (2022). Membrane fouling and fouling mitigation in oil–water separation: A review. Journal of Environmental Chemical Engineering, 10(3), 107532.
Lee, Y., Kim, T., Kim, B., Choi, S., & Kim, K. (2023). Synthesis of TiO2/MoSx/Ag nanocomposites via photodeposition for enhanced photocatalysis and membrane fouling mitigation. Journal of Environmental Chemical Engineering, 11(2), 109266.
Baig, N., Salhi, B., Sajid, M., & Aljundi, I. H. (2022). Recent progress in microfiltration/ultrafiltration membranes for separation of oil and water emulsions. The Chemical Record, 22(7), e202100320.
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.