Kinetic and Isotherm Analysis of TiO₂/UiO-66-NH₂ Composites for Treating Produced Water Contaminants
DOI: https://doi.org/10.14710/12.2.%25p
Abstract
The TiO₂/UiO-66-NH₂ composites synthesized through a hydrothermal method, demonstrated a significant enhancement in photocatalytic activity under visible light, offering a promising solution for the treatment of pollutants in produced water. These composites exhibited exceptional photocatalytic adsorption and degradation capabilities, efficiently removing various contaminants. The adsorption process during pollutant removal was effectively modeled by both the Freundlich and Langmuir isotherms, indicating the heterogeneous nature of the adsorption sites and the monolayer adsorption behavior, respectively. The composites achieved impressive removal efficiencies of 88.46% for NH₃-N and 81.97% for total dissolved solids (TDS), underscoring their potential to address common pollutants in produced water. UV-vis spectroscopy analysis revealed a band gap energy of 2.28 eV for the TiO₂/UiO-66-NH₂ composites, which is lower than that of pure TiO₂, contributing to enhanced photocatalytic performance under visible light. This reduced band gap improves the material's ability to absorb visible light, thereby facilitating more efficient degradation of organic pollutants. Furthermore, the pseudo-second-order kinetic model best described the adsorption process for both TiO₂ and TiO₂@UiO-66-NH₂ composites, suggesting that chemisorption is the dominant mechanism for NH₃-N removal. This indicates that the composites exhibit a high affinity for NH₃-N, effectively removing it from produced water. Overall, the TiO₂/UiO-66-NH₂ composites provide a promising approach for mitigating contaminants in produced water, demonstrating their potential for use in both environmental and industrial water treatment applications.
Keywords
Full Text:
FULL TEXT PDFReferences
References
Akinyemi, A., Agboola, O., Alagbe, E., & Igbokwe, E. (2024). The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review. Desalination and Water Treatment, 320, 100780. https://doi.org/10.1016/J.DWT.2024.100780
César, S. D., De Jager, D., & Njoya, M. (2024). The role of hydrocyclone and induced gas flotation technologies in offshore produced water deoiling advancements. Petroleum Research. https://doi.org/10.1016/J.PTLRS.2024.10.002
Chakravorty, A., & Roy, S. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/J.SCENV.2024.100155
Chen, C., Li, X., Zou, W., Wan, H., Dong, L., & Guan, G. (2021). Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO2 separation. Applied Surface Science, 553, 149547. https://doi.org/10.1016/J.APSUSC.2021.149547
David, L. O., Nwulu, N., Aigbavboa, C., & Adepoju, O. (2023). Towards global water security: The role of cleaner production. Cleaner Engineering and Technology, 17, 100695. https://doi.org/10.1016/J.CLET.2023.100695
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29. https://doi.org/10.1016/J.JPHOTOCHEMREV.2015.08.003
Farnan, J., Vanden Heuvel, J. P., Dorman, F. L., Warner, N. R., & Burgos, W. D. (2023). Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters. Environmental Pollution, 334, 122184. https://doi.org/10.1016/J.ENVPOL.2023.122184
Hachemi, C., Abdelmalek, F., Benidris, E. B., Bendahman, R., Andersen, H. R., & Addou, A. (2024). Photocatalytic Fenton-like degradation of Acid Green 25 by novel aluminum nanoferrites with persulfate: Optimization by response surface methodology. Journal of Alloys and Compounds, 1009, 176909. https://doi.org/10.1016/J.JALLCOM.2024.176909
Khan, H., & Shah, M. U. H. (2023). Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review. Journal of Environmental Chemical Engineering, 11(6), 111532. https://doi.org/10.1016/J.JECE.2023.111532
Kumar, A. V., James, T. K., Fizala, M. B., & Mathew, S. (2024). Photocatalytic applications and synthetic strategies of Ti and Fe-based MOFs. Inorganica Chimica Acta, 572, 122297. https://doi.org/10.1016/J.ICA.2024.122297
Kusworo, T. D., Puspa, M. B., Kumoro, A. C., Sutapa, I. D. A., & Utomo, D. P. (2024). Novel photosensitive La@TiO2 nanocomposite: A breakthrough in visible-light photocatalysis for oil field water treatment. Case Studies in Chemical and Environmental Engineering, 10, 100884. https://doi.org/10.1016/J.CSCEE.2024.100884
Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/J.CHERD.2016.02.006
Lei, Y., Zhu, L., Xu, J., Liu, S., Zeng, Z., Li, X., & Wang, G. (2023). The metal organic framework of UiO-66-NH2 reinforced nanofiltration membrane for highly efficient ion sieving. Journal of Environmental Chemical Engineering, 11(6), 111222. https://doi.org/10.1016/J.JECE.2023.111222
Man, Z., Meng, Y., Lin, X., Dai, X., Wang, L., & Liu, D. (2022). Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide. Chemical Engineering Journal, 431, 133952. https://doi.org/10.1016/J.CEJ.2021.133952
Mishra, S., & Sundaram, B. (2023). A review of the photocatalysis process used for wastewater treatment. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.07.147
Monticone, S., Tufeu, R., Kanaev, A. V., Scolan, E., & Sanchez, C. (2000). Quantum size effect in TiO2 nanoparticles: does it exist? Applied Surface Science, 162–163, 565–570. https://doi.org/10.1016/S0169-4332(00)00251-8
Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100112. https://doi.org/10.1016/J.NEXUS.2022.100112
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/J.APCATB.2012.05.036
Pholosi, A., Naidoo, E. B., & Ofomaja, A. E. (2020). Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South African Journal of Chemical Engineering, 32, 39–55. https://doi.org/10.1016/J.SAJCE.2020.01.005
Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Fundamentals of adsorption technology. Interface Science and Technology, 33, 1–70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/J.CLET.2020.100032
Sadia, S. I., Shishir, M. K. H., Ahmed, S., Aidid, A. R., Islam, M. M., Rana, M. M., Al-Reza, S. M., & Alam, M. A. (2024). Crystallographic biography on nanocrystalline phase of polymorphs titanium dioxide (TiO2): A perspective static review. South African Journal of Chemical Engineering, 50, 51–64. https://doi.org/10.1016/J.SAJCE.2024.07.005
Sun, S., Li, H., & Xu, Z. J. (2018). Impact of Surface Area in Evaluation of Catalyst Activity. Joule, 2(6), 1024–1027. https://doi.org/10.1016/J.JOULE.2018.05.003
Wang, C., Wang, Z., Mao, S., Chen, Z., & Wang, Y. (2022). Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chinese Journal of Catalysis, 43(4), 928–955. https://doi.org/10.1016/S1872-2067(21)63924-4
Wang, J., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127279
Wang, J., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156. https://doi.org/10.1016/J.JHAZMAT.2020.122156
Wang, Y. L., Zhang, S., Zhao, Y. F., Bedia, J., Rodriguez, J. J., & Belver, C. (2021). UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation. Journal of Environmental Chemical Engineering, 9(5), 106087. https://doi.org/10.1016/J.JECE.2021.106087
Ye, L., & Liang, Y. (2024). First principles study on band gap modulation of TiO2 (112) surface for enhancing optical properties. Physica B: Condensed Matter, 674, 415579. https://doi.org/10.1016/J.PHYSB.2023.415579
Zhuang, Y., Ji, Y., Kuang, Q., Zhang, Z., Li, P., Song, J., & He, N. (2023). Oxidation treatment of shale gas produced water: Molecular changes in dissolved organic matter composition and toxicity evaluation. Journal of Hazardous Materials, 452, 131266. https://doi.org/10.1016/J.JHAZMAT.2023.131266
WasTech by http://ejournal.undip.ac.id/index.php/wastech is licensed under Creative Commons Attribution-ShareAlike 4.0.