Copolymerization of ε-caprolactone with Epichlorohydrin by a Green Catalyst, Maghnite

Abdelghani Bouchama, Mohammed Issam Ferrahi


Most of the cationic initiators used in the synthesis of copolymers are expensive. They may be poisoned by products of the reaction or impurities present in the monomer feed, and contain heavy metals, such as chromium, mercury, antimony, etc., that presents environmental disposal problems for the user. Maghnite is a montmorillonite sheet silicate clay that is exchanged with protons to produce Maghnite-H+ (Mag-H+). This non-toxic and cheaper cationic catalyst was used for the copolymerization of ε-caprolactone (CL) with epichlorohydrin (ECH). The effects of the amounts of Mag-H+ and the temperature on the synthesis of poly (ε-caprolactone-co-epichlorohydrin) were studied. Increasing Maghnite-H+ proportion and temperature produced the increase in copolymerization yield. The copolymer obtained was characterized by 1H-NMR and IR spectroscopy. Copyright © 2012 BCREC UNDIP. All rights reserved.

Received: 24th September 2011, Revised: 12nd December 2011; Accepted: 9th January 2012

[How to Cite: A. Bouchama, M.I. Ferrahi, and M. Belbachir. (2012). Copolymerization of ε-caprolactone with Epichlorohydrin by a Green Catalyst, Maghnite. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1): 43-48.  doi:10.9767/bcrec.7.1.1211.43-48]

[How to Link / DOI: ]

| View in 


Maghnite; Montmorillonite; Epichlorohydrin; epsilon-caprolacton; Ring opening polymerization

Full Text:

Fulltext PDF


Theng, B. K. G. (1982). Clay activated organic reactions. Dev. Sedimentol. 35: 197-238.

Chen, J.H.; Huang, C.X.; Chen, Z.L. (2000). Study on the biocompatibility and toxicology of biomaterials - poly(ε-caprolactone). J. Biomed. Eng. 17:380–382.

LeRay, A.M.; Chiffoleau, S.; Iooss, P.;Grimandi, G.; Gouyette, A.; Daculsi, G.; Merle,C. (2003). Vancomycin encapsulation in biodegradable poly(epsilon-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials. 24:443–449. CrossRef

Pitt, C.G.; Jeffcoat, A.R.; Zweidinger, R.A.; Schindler, A. (1979). Sustained drug delivery systems. I. The permeability of poly(epsilon-caprolactone), poly(DL-lactic acid), and their copolymers. J. Biomed. Mater. Res. 13:497–507. CrossRef

Ye, W.P.; Du, F.S.; Jin, W.H.; Yang, J.Y.; Xu, Y. (1997). In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: Influence of composition, temperature and morphology. React. Funct. Polym. 32:161–168. CrossRef

Yavuz, H.; Babac, C.; Tuzlakoglu, K.; Piskin, E. (2002). Preparation and degradation of l-lactide and unknowing caprolactone homo and copolymer films. Polym. Degrad. Stab. 75:431–437 CrossRef

Storey, R.F.; Mullen, B.D.; Melchert, K.M. (2001). Synthesis of novel hydrophilic poly(ester-carbonates) containing pendent carboxylic acid groups. J. Macromol. Sci. Pure. Appl. Chem. 38:897– 917. CrossRef

Guan, H.L.; Xie, Z.G.; Tang, Z.H.; Xu, X.Y.; Chen .X.S.; Jing, X.B. (2005). Preparation of block copolymer of epsilon-caprolactone and 2-methyl -2-carboxyl -propylene carbonate. Polymer. 46: 2817–2824. CrossRef

Pêgo, A.P. ; Luyn, M.J.A.V.; Brouwer, L.A. ; Wachem, P.B.V.; Poot, A.A.;GrijiPma, D.W. (2003). In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response. J. Biomed. Mater. Res. 67 (A): 1044–1054. CrossRef

Albertsson, A.C.; Eklund, M. (1995). Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride). J. Appl. Polym. Sci. 57:87–103. CrossRef

Albertsson, A.C.; Eklund, M. (1994). Synthesis of copolymers of 1,3-dioxan-2-one and oxepan-2-one using coordination catalysts. J. Polym. Sci. Part A: Polym. Chem. 32: 265–279. CrossRef

Barakat, I.;Dubois, Ph.;Grandfils, Ch.; Jêrôme, R. (2001). Poly(e-caprolactone-b-glycolide) and poly(D,L-lactide-b-glycolide) diblock copolyesters: Controlled synthesis, characterization, and colloidal dispersions. J. Polym. Sci. Part A: Polym. Chem. 39: 294–306. CrossRef

Bero, M.; Czapla, B.; Dobrzynski, P.; Janeczek, H.; Kasperczyk, J. (1999). Copolymerization of glycolide and ε-caprolactone, 2. Random copolymerization in the presence of tin octoate. Macromol. Chem. Phys. 200: 911–916.

Dzhavadyan, E.A.; Rozenberg, B.A.; Yenikolopyan, N.S. (1973). Kinetics of the copolymerization of tetrahydrofuran with ε-caprolactone. polymer. Science.U.S.S.R..15: 2235-2242. CrossRef

Ge, H.; Hu, Y.; Jiang, X.; Cheng, D.,Yuan, Y.; Bi, H.; Yang, C. (2002) Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles.. J. Pharm. Sci. 91: 1463 – 1473. CrossRef

He, F.; Li, S.; Vert, M.; Zhuo, R.( 2003) Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol). Polymer. 44: 5145–5151. CrossRef

Brown, D.R.; Carpathica,G. (1994) Clays as catalyst and reagent supports. Ser. Clays. 45: 45-56. CrossRef

Laszlo, P. (1987). Preparative Chemistry Using Supported Reagents. Academic. Press. San Diego.

Belbachir, M.; Bensaoula, A. (2006). Composition and method for catalysis using bentonites. US Patent 6,274,527 B1

Harrane, A.; Meghabar, R. ; Belbachir, M. (2002). A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization. Int. J. Mol. Sci. 3: 790-800. View at Publisher

Meghabar, R.; Megherbi, A.; Belbachir, M. (2003). An ecocatalyst for cationic polymerization of N-vinyl-2-pyrrolidone. Polymer. 2397

DOI: 10.9767/bcrec.7.1.1211.43-48


  • There are currently no refbacks.

Creative Commons License
BCREC by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats