Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production

Ho-Shing Wu, Donny Lesmana

Abstract


Hydrogen is a promising alternative energy sources, hydrogen can be used in fuel cell applications to pro-ducing electrical energy and water as byproduct. Therefore, fuel cell is a simple application and environ-mentally friendly oriented technology. Recent years various methods have been conducted to produce hy-drogen. Those methods are derived from various sources such as methanol, ethanol, gasoline, hydrocarbons. This article presents a brief review a parameter process of that affects in autothermal reforming methanol use Cu-based catalysts for production of hydrogen. Copyright © 2012 BCREC UNDIP. All rights reserved.

Received: 3rd January 2012; Revised: 23rd February 2012; Accepted: 28th February 2012

[How to Cite: H.S. Wu, and D. Lesmana. (2012). Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1): 27-42. doi:10.9767/bcrec.7.1.1284.27-42]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1284.27-42 ]


Keywords


Authothermal; Methanol; Reforming; Hydrogen; Cu; Fuel Cell

Full Text:

Fulltext PDF

References


Suparoek, H., and Pisanu, T. (2002). Effect of Preparation of Cu/Zn over Al2O3 Catalysts for Hydrogen Production from Methanol Reforming. Suranaree Journal of Science Technology 16(2): 103-112.

Abdullah, M., Khairurrijal, N.F.A, Marully, A. R., Sanny, M. (2010). Design of Steam Reforming Reactor for Converting Methanol into Hydrogen Using an Ultrasonic Nebulizer as Liquid Feeder and Polymer Liquid Processed CuO/ZnO/Al2O3 Particles as Catalyst. Journal of Sustainable Energy and Environment 1: 11-15.

Cheng, W.H. (1999). Development of Methanol Decomposition Catalysts for Production of H2 and CO. Accounts of Chemical Research 32: 685-691. CrossRef

Yong, S.T., Hidajat, K., Kawi, S. (2004). Reaction study of autothermal steam reforming of methanol to hydrogen use a novel nano CuZnAl-catalyst. Journal of Power Sources 131 : 91–95. CrossRef

Ersoza, A., Olguna, H., Ozdoganb, S., Gungora, C., Akguna, F., Tırıs, M. (2003). Autothermal reforming as a hydrocarbon fuel processing option for PEM fuel cell. Journal of Power Sources 118 : 384–392. CrossRef

Kruger, P. (2001). Electric Power Requirement for Large-scale Production of Hydrogen Fuel for the World Vehicle Fleet. International Journal of Hydrogen Energy 26 : 1137-1147. CrossRef

Chin, Y.H., Robert, D., Hu, J., Alice, C.D., Wang, Y. (2002). Steam reforming of methanol over highly active Pd/ZnO catalyst. Catalysis Today 77 : 79–88. CrossRef

Kojima, Y., Suzuki, K.-I., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H. (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy 27 : 1029 – 1034. CrossRef

Nunticha, K., Supaporn, T., Apichai, T., Navadol, L. (2006). Study of Hydrogen Production from Natural Gas by Autothermal Reforming. Asean Journal on Energy and Environment 7(4) : 434-443

Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., Lee, J.S. (2004). Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance. International Journal of Hydrogen Energy 29: 263 – 267. CrossRef

Liu, Y., Hayakawa, T., Suzuki, K., Hamakawa, S., Tsunoda, T., Ishii, T., Kumagai, M. (2002). Highly active copper/ceria catalysts for steam reforming of methanol. Applied Catalysis A: General 223 : 137–145. CrossRef

Diagne, C., Idriss, H., Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh=CeO2–ZrO2 catalysts. Catalysis Communications 3: 565–571. CrossRef

Schuyten, S., Dinka, P., Mukasyan, A.S., Wolf, E. (2008). A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol. Catalysis Letters 121 : 189–198. CrossRef

Bichon, P., Asheim, M. Jordal, A., Sperle, T., Fathi, M., Holmen, A., Blekkan, E.A. (2007). Hydrogen from methanol steam reforming over Cu-based catalysts with and without Pd promotion. International Journal of Hydrogen Energy 32 : 1799 – 1805. CrossRef

Nádia, R.C.F.M., Roberta, C.P.R.e.R.P.S.P. (2002). Performance of catalysts with Nb2O5 for hydrogen production from ethanol steam reforming. Maringá 24 (6) : 1637-1642.

Sharaf, A.M., and El-Sayed, M.A.H. (2009). Dynamic Control of Fuel Cell Powered Water Pumping Station. Paper presented in International Conference. ICREPQ-2009. April 15-17. European Association for the Development of Renewable Energies, Environment and Power Quality. Valencia. Spain.

Zahira, Y., Satheesh, K.N.M., Ibrahim, M.A., Daud, W.R.W., Kadhum, A.A.H. (2009). Multi Composition Cu-Zn-Al Catalyst Supported on ZSM-5 for Hydrogen Production. European Journal of Scientific Research 28 (1) : 141-154. View at Publisher

Sáa, S., Silva, H., Lúcia, B., José, M.S., Adélio, M. (2010). Catalysts for methanol steam reforming — A review. Applied Catalysis B: Environmental 99 : 43–57. CrossRef

Chin, Y.H., Wang, Y., Dagle, R.A., Li, X.S. (2003). Methanol steam reforming over Pd/ZnO: Catalyst preparation and pretreatment studies. Fuel Processing Technology 83 : 193– 201. CrossRef

Weidong, G., Shen, J.P., Song, C. (2003). Hydrogen Production From Integrated Methanol Reforming Over Cu-ZnO/Al2O3 and Pt/Al2O3 Catalysts For PEM Fuel Cells. Preprint Papers - American Chemical Society, Division of Fuel Chemistry 48(2) : 804 .

Bickford, E.S., Velu, S., Song, C. (2005). Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water–gas-shift reaction. Catalysis Today 99: 347–357. CrossRef

Velu, S., Suzuki, K., Osaki, T. (1999). Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides. Catalysis Letters 62 : 159–167.

Zhang, X., Shi, P. (2003). Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical 194 : 99–105. CrossRef

Kuo, C.H., Wu, H.S. (2009). Methanol reforming reaction carried out at low temperature using Cu/ZnO/Al2O3, Derivative, Master Thesis, Yuan Ze University.

Chuang, C.C., Chen, Y.H., Jeffrey, D.W., Yua, C.C., Liu, Y.C., Lee, C.H. (2008). Optimal design of an experimental methanol fuel reformer. International Journal of Hydrogen Energy 33 : 7062 – 7073. CrossRef

James, L., Andrew, D. (2003). Fuel Cells System Explained, John Wiley and Sons Ltd. The Atrium. Southern Gate, Chichester, West Sussex PO19 8SQ. England.

Larminie, J., Dicks, A. (2003). Fuel Cell Systems Explained Second Edition. John Wiley and Sons Ltd. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ. England.

Lee, J.K., Ko, J.B., Kim, D.H. (2004). Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Applied Catalysis A: General 278: 25–35. CrossRef

Shin, Y., Park, W., Chang, J., Park, J. (2007). Evaluation of the high temperature electrolysis of steam to produce hydrogen. International Journal of Hydrogen Energy 32 : 1486 – 1491. CrossRef

Dubey, P.K., Sinha, A.S.K., Talapatra, S., Koratkar, N., Ajayan, P.M., Srivastava, O.N. (2010). Hydrogen generation by water electrolysis using carbon nanotube anode. International Journal of Hydrogen Energy 35: 3945–3950. CrossRef

Mingyi, L., Bo, Y., Jingming, X., Jing, C. (2008). Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production. Journal of Power Sources 177: 493–499. CrossRef

Abanades, S., Charvin, P., Flamant, G., Neveu, P. (2006). Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31: 2805–2822. CrossRef

Abanades, S., Charvin, P., Lemont, F., Flamant, G. (2008). Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. International Journal of Hydrogen Energy 33 : 6021–6030. CrossRef

Gokon, N., Hasegawa, T., Takahashi, S., Kodama, T. (2008). Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device. Energy 33 : 1407– 1416. CrossRef

Panagiotis, L. (2011). Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell The concept of the Photofuelcell: A review of a re-emerging research field. Journal of Hazardous Materials 185 : 575–590. CrossRef

Maria, A., Panagiotis, B., Nikoleta, S., Panagiotis, L. (2008). Hydrogen and electricity generation by photoelectrochemical decomposition of ethanol over nanocrystalline titania. International Journal of Hydrogen Energy 33 : 5045–5051. CrossRef

Mishra, P.R., Shukla, P.K., Singh, A.K., Srivastava, O.N. (2003). Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process. International Journal of Hydrogen Energy 28: 1089 – 1094. CrossRef

Seichang, O., Nama, W.H., Sarper, J., Cho, S.J., Lee, C.H., Yoon, J. (2011). Photoelectrochemical hydrogen production with concentrated natural seawater produced by membrane process. Solar Energy 85: 2256–2263. CrossRef

Eroglu, E., Anastasios, M. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology 102 : 8403–8413. CrossRef

Chitralekha, N.D.J., Jose, G., Lindblad, P., Thorsten, H., Stig, A., Borgvang, K.S., Debabrata, D. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. International Journal of Hydrogen Energy 35 : 10218-10238. CrossRef

Benemann, J.R. (1997). Feasibility Analysis of Photobiological Hydrogen Production. International Journal of Hydrogen Energy 22 (10/11) : 979-987.

Jorge, A.P.L., Vasilios, I.M. (2011). Natural gas based hydrogen production with zero carbon dioxide emissions. International Journal of Hydrogen Energy 36: 12853-12868. CrossRef

Pasquale, C., Fortunato, M. (2009). Natural gas and biofuel as feedstock for hydrogen production on Ni catalysts. Journal of Natural Gas Chemistry 18 : 9–14. CrossRef

Sheldon, H.D.L., Daniel, V.A., Shabbir, A., Steven, G.C., Todd, L.H. (2005). Hydrogen from natural gas: part I—autothermal reforming in an integrated fuel processor. International Journal of Hydrogen Energy 30 : 829–842. CrossRef

Lin, K.S., Pan, C.Y., Sujan, C., Tu, M.T., Hong, W.T., Yeh, C.T. (2011). Hydrogen Generation Using a CuO/ZnO-ZrO2 Nanocatalyst for Autothermal Reforming of Methanol in a Microchannel Reactor. Molecules 16 : 348-366. CrossRef

Raphael, O.I., Narendra, N.B. (1994) Production of Hydrogen from Methanol, 2, Experimental Studies, Industrial Engineering and Chemistry Research 33 : 2056-2065.

Hong, X., Ren, S. (2008). Selective hydrogen production from methanol oxidative steam reforming over Zn–Cr catalysts with or without Cu loading. International Journal of Hydrogen Energy 33: 700–708. CrossRef

Udani, P.P.C., Gunawardana, P.V.D.S., Hyun, C.L., Dong, H.K. (2009). Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts. International Journal of Hydrogen Energy 34 : 7648–7655. CrossRef

Patel, S., Pant, K.K. (2006). Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol. Journal of Power Sources 159 : 139–143. CrossRef

Wenjuan, S., Zhaochi, F., Zhonglai, L., Jing, Z., Wenjie, S., Can, L. (2004). Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods. Journal of Catalysis 228 : 206–217. CrossRef

Gang, H., Liaw, B.J., Jhang, C.J., Chen, Y.Z. (2009). Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Applied Catalysis A: General 358 : 7–12. CrossRef

Chein, R.Y., Chen, L.C., Chen, Y.C., Chung, J.N. (2009). Heat transfer effects on the methanol-steam reforming with partially filled catalyst layers. International Journal of Hydrogen Energy 34 : 5398–5408. CrossRef

Bergamaschi, V.S., Carvalho, F.M.S. (2008). Hydrogen Production by Ethanol Steam Reforming Over Cu and Ni Catalysts Supported on ZrO2 and Al2O3 Microspheres. Materials Science Forum 591-593: 734-739.

Casanovas, A., Saint-Gerons, M., Griffon, F., Llorca, J. (2008). Autothermal generation of hydrogen from ethanol in a microreactor. International Journal of Hydrogen Energy 33 : 1827–1833. CrossRef

Yang, Y., Ma, J., Wu, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy 31: 877–882. CrossRef

Yu, C.Y., Lee, D.W., Park, S.J., Lee, K.Y., Lee, K.H. (2009). Study on a catalytic membrane reactor for hydrogen production from ethanol steam reforming. International Journal of Hydrogen Energy 34 : 2947–2954. CrossRef

Cai, W., Wang, F., van Veen, A., Descorme, C., Schuurman, Y., Shen, W., Mirodatos, C. (2010). Hydrogen production from ethanol steam reforming ]in a micro-channel reactor. International Journal of Hydrogen Energy 35: 1152–1159. CrossRef

Fagen, W., Weijie, C., Helene, P., Yves, S., Claude, D., Claude, M., Wenjie, S. (2011). Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. International Journal of Hydrogen Energy 36 : 3566-3574.

Mohamed, H.A.A., Fatthy, M.M., Abdel, W.E.E.E. (2011). Hydrogen production from rotten dates by sequential three stages fermentation. International Journal of Hydrogen Energy 36 : 3518-3527.

Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy 34 : 812 – 820. CrossRef

Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G. (2010). Influence of pH on fermentative hydrogen production from sweet sorghum extract. International Journal of Hydrogen Energy 35 : 1921–1928. CrossRef

Kargi, F., Catalkaya, E.C. (2011). Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. International Journal of Hydrogen Energy 36 : 3457-3464. CrossRef

Kapdan, I.K., Kargi, F., Oztekin, R., Argun, H. (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy 34 : 2201–2207. CrossRef

Rabe, S., Vogel, F., Truong, T.-B., Shimazu, T., Wakasugi, T., Aoki, H., Sobukawa, H. (2009). Catalytic reforming of gasoline to hydrogen: Kinetic investigation of deactivation processes. International Journal of Hydrogen Energy 34 : 8023–8033. CrossRef

Otsuka, K., Shigeta, Y., Takenaka, S. (2002). Production of hydrogen from gasoline range alkanes with reduced CO2 emission. International Journal of Hydrogen Energy 27 : 11–18. CrossRef

Agrell, J., Birgersson, H., Boutonnet, M., Melián, C., Navarro, R.M., Fierro, J.L.G. (2003). Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis 219 : 389–403. CrossRef

Dauenhauer, P.J., Salge, J.R., Schmidt, L.D. (2006). Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. Journal of Catalysis 244 : 238–247. CrossRef

Liao, P.H., Yang, H.M. (2008). Preparation of Catalyst Ni–Cu/CNTs by Chemical Reduction with Formaldehyde for Steam Reforming of Methanol. Catalysis Letters 121 : 274–282. CrossRef

Lindström, B., Agrell, J., Pettersson, L.J. (2003). Combined methanol reforming for hydrogen generation over monolithic catalysts. Chemical Engineering Journal 93 : 91–101. CrossRef

Lindstrom, B., Pettersson, L.J. (2001). Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. International Journal of Hydrogen Energy 26 : 923–933. CrossRef

Brown, J.C., Gulari, E. (2004). Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts. Catalysis Communications 5 : 431–436. CrossRef

Michael, K., Theodore, K., John, K., David, C., Shabbir, A. (2002). Catalytic Autothermal Reforming Of Hydrocarbon Fuels For Fuel Cells, Prepared for presentation at the 2002 Spring Meeting. New Orleans. LA March 10-14. Fuel Processing Session II.

Papavasiliou, J., Avgouropoulos, G., Ioannides, T. (2004). Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts. Catalysis Communications 5 : 231–235. CrossRef

Hernández, R.P., Martínez, A.G., Wing, C.E.G. (2007). Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy 32 : 2888–2894. CrossRef

Gunawardana, P.V.D.S., Lee, H.C., Kim, D.H. (2009). Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range. International Journal of Hydrogen Energy 34: 1336–1341. CrossRef

Gines, M.J.L., Marchi, A.J., Apestegufa, C.R. (1997). Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Applied Catalysis A: General 154 : 155-171.

Iwasa, N., Mayanagi, T., Nomura, W., Arai, M., Takezawa, N. (2003). Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Applied Catalysis A: General 248 : 153–160. CrossRef

Suwa, Y., Ito, S.-I., Kameoka, S., Tomishige, K., Kunimori, K. (2004). Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Applied Catalysis A: General 267 : 9–16. CrossRef

Ranganathan, E.S., Bej, S.K., Thompson, L.T. (2005). Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Applied Catalysis A: General 289 : 153–162. CrossRef

Wu, H.S., Chung, S.C. (2007). Kinetics of Hydrogen Production of Methanol Reformation Using Cu/ZnO/Al2O3 catalyst. Journal of Combinatorial Chemistry 9 : 990-997. CrossRef

Turco, M., Bagnasco, G., Cammarano, C., Senese, P., Costantino, U., Sisani, M. (2007). Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental 77 : 46–57. CrossRef

Lyubovsky, M., Roychoudhury, S. (2004). Novel catalytic reactor for oxidative reforming of methanol. Applied Catalysis B: Environmental 54 : 203–215. CrossRef

Chang, C.C., Chang, C.T., Chiang, S.J., Liaw, B.J., Chen, Y.Z. (2010). Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. International Journal of Hydrogen Energy 35 : 7675-7683. CrossRef

Chen, G., Li, S., Li, H., Jiao, F., Yuan, Q. (2007). Methanol oxidation reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst in a monolithic reactor. Catalysis Today 125 : 97–102. CrossRef

Yoon, H.C., Paul, A.E., Kim, H.M. (2008). Lowering the O2/CH3OH ratio in autothermal reforming of methanol by using a reduced copper-based catalyst. International Journal of Hydrogen Energy 33: 6619–6626. CrossRef

Pérez-Hernández, R., Mondragón Galicia, G., Mendoza Anaya, D., Palacios, J., Angeles-Chavez, C., Arenas-Alatorre, J. (2008). Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy 33 : 4569–4576. CrossRef

Patel, S., Panta, K.K. (2007). Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts. Chemical Engineering Science 62 : 5436–5443. CrossRef

Liu, S., Takahashi, K., Eguchi, H., Uematsu, K. (2007). Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials. Catalysis Today 129 : 287–292. CrossRef

Liu, N., Yuan, Z., Wang, C., Wanga, S., Zhanga, C., Wanga, S. (2008). The role of CeO2–ZrO2 as support in the ZnO–ZnCr2O4 catalysts for autothermal reforming of methanol. Fuel Processing Technology 89 : 574–581. CrossRef

Wang, L.C., Liu, Q., Chen, M., Liu, Y.M., Cao, Y., He, H.Y., Fan, K.N. (2007). Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-Coprecipitation Technique, Journal of Physical Chemistry C. 111: 16549-16557. CrossRef

Avgouropoulos, G., Ioannides, T. (2003). Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Applied Catalysis A: General 244 :155–167. CrossRef

Hong, X., Ren, S. (2008). Selective hydrogen production from methanol oxidative steam reforming over Zn–Cr catalysts with or without Cu loading. International Journal of Hydrogen Energy 33: 700–708. CrossRef

Zhang, D.X., Xu, H., Liao, Y.Z., Li, H.S., Yang, X.J. (2009). Synthesis and Characterisation of Nano-Composite Copper Oxalate Powders by a Surfactant-Free Stripping-Precipitation Process. Powder Technology 189 : 404-408. CrossRef

Kawamura, Y., Yamamoto, K. (2005). Preparation of Cu/ZnO/ZrO2/Al2O3 Catalyst for a Micro Methanol Reformer. Journal of Power Sources. 150: 20-26. CrossRef

Wang, C., Liu, N., Pan, L., Wang, S., Yuan, Z., Wang, S. (2007). Measurement of concentration profiles over ZnO–Cr2O3/CeO2–ZrO2 monolithic catalyst in oxidative steam reforming of methanol. Fuel Processing Technology 88 : 65–71. CrossRef




DOI: 10.9767/bcrec.7.1.1284.27-42

Refbacks

  • There are currently no refbacks.





Creative Commons License
BCREC by http://ejournal.undip.ac.id/index.php/bcrec/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
bcreccrossref