DOI: https://doi.org/10.14710/reaktor.17.2.96-103
Copyright (c) 2017 REAKTOR
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Article Info
Submitted: 18-04-2017
Published: 20-06-2017
Section: Research Article

The study aims to investigate the effect of calcination temperatures on the phase formation and electrical properties of aluminosilicate geopolymer prepared from rice husk silica and sodium aluminate. The samples were calcined at temperature from 150 oC to 550 oC, the development of structures was characterized using x-ray difraction (XRD) and the electrical properties were measured by LCR meter. The result obtained indicated the significant role of calcining temperature on phase transformation of boehmite and quartz into aluminosilicate geopolymer, in which at calcining temperatures from 450 oC to 550 oC, and  the samples were dominated by semicrystal to amorphous phase which indicated that the aluminosilicate geoplymer has been formed. The presence of aluminosilicate geopolymer resulted in increased ionic electrical conductivity and dielectric loss factor as well as decrease dielectric constant. Ionic electrical conductivity of the calcined sample at 450 oC is 4,49.10-5 S/cm at frequancy of 5.106 Hz, and XRD analysis demostrated that the main structure is phase of semicrystal aluminosilicate geopolymer. Based on these character, the sample was considered is very suitable used to the fast ionic conductor materials.

Studi ini bertujuan untuk menginvestigasi efek suhu kalsinasi pada formasi fasa dan sifat listrik aluminosilikat geopolimer yang dipreparasi dari silika sekam padi dan sodium aluminat. Sampel dikalsinasi pada suhu 150 oC 550 oC, perubahan struktur dikarakterisasi menggunakan x-ray difraction (XRD) dan sifat listrik diukur menggunakan LCR meter. Hasil yang diperoleh mengindikasikan pengaruh yang signifikan suhu kalsinasi pada transformasi boehmite dan quartz menjadi aluminosilikat geopolimer, dimana pada suhu kalsinasi 450 oC 550 oC didominasi oleh fasa semikristal hingga amorf yang mencirikan terbetuknya aluminosilikat geopolimer. Terbentuknya struktur aluminosilikat geopolimer diikuti dengan peningkatan konduktivitas listrik ionik, penurunan konstanta dielektrik, serta peningkatan faktor rugi dielektrik. Nilai konduktivitas listrik ionik sampel kalsinasi 450 oC ialah 4,49.10-5 S/cm pada frekuensi 5.106 Hz, dan analisis XRD menunjukkan struktur utamanya berupa fasa semikristal aluminosilikat geopolimer. Berdasarkan karakteristik tersebut, sampel yang ditinjau merupakan material dengan konduktivitas ionik yang tinggi sehingga sampel tersebut sangat potensial untuk dimanfaatkan sebagai fast ionic conductor.


aluminosilicate; electrical properties; phase; rice husk

  1. Agus - Riyanto  Orcid Scholar
    Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung Jl. Prof. Dr. Soemantri Brodjonegoro No.1 Bandarlampung 35145 , Indonesia
  2. Simon - Sembiring  Orcid Scholar
    Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung Jl. Prof. Dr. Soemantri Brodjonegoro No.1 Bandarlampung 35145 , Indonesia
  3. Junaidi - -  Orcid Scholar
    Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung Jl. Prof. Dr. Soemantri Brodjonegoro No.1 Bandarlampung 35145 , Indonesia

Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W. and Barroso Aguiar, J. (2015), Mix design, properties and cost analysis of fly ash-based geopolymer foam, Construction and Building Materials. 80, pp. 18–30.

Al-Bakri, A.M.M., Kamarudin, H., Buhussain, M., Nizar, I.K., and Mastura, W.I.W., (2011), Mechanism and Chemical Reaction of Fly As Geopolymer Cement - A Review, Journal of Asian Scientific Research, 1(5), 247-253.

Allahverdi, A, Kani, E. and Yazdanipour, M. (2011), Effects of blast furnance slag on natural pozzolan- based geopolymer cement, Ceramics-Silickáty, 55(1), pp. 68–78.

Anirudhan, V. P. and Unnithan, A. (2016), Review on Development of Geopolymer Composites from Aluminosilicate Materials, International Journal of Scientific Engineering and Research, 4(3), pp. 2014–2017.

Azimi, E. A., Mustafa, M., Bakri, A., Ming, L. Y., Yong, H. C., Hussin, K. and Aziz, I. H. (2016), Processing and Properties of Geopolymers As Thermal Insulating Materials : a Review, Rev. Adv. Mater. Sci., 44, pp. 273–285.

Chen. L., Wang, L., Wang, Y., and Feng, J. (2016), Preparation and Properties of Alkali Activated, Materials, 9(767), pp. 1–12.

Cui, X. M., Liu, L. P., He, Y., Chen, J. Y. and Zhou, J. (2011), A novel aluminosilicate geopolymer material with low dielectric loss, Materials Chemistry and Physics, 130, pp. 1–4.

Cui, X.-M., Zheng, G.-J., Han, Y.-C., Su, F. and Zhou, J. (2008), A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials, Journal of Power Sources, 184, pp. 652–656.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and Van Deventer, J. S. J. (2007), Geopolymer technology: The current state of the art, Journal of Materials Science, 42(9), pp. 2917–2933.

Faizul, C.P., Abdullah, C. and Fazlul, B., (2013), Review of extraction of silica from agricultural wastes using acid leching treatment, Advance Materials Research, 626, pp 997–1000.

Geraldo, R. H., and Camarini, G. (2015), Geopolymers Studies in Brazil: A Meta-Analysis and Perspectives, International Journal of Engineering and Technology, 7(5), pp. 390–396.

Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), Electrical conductivity and dielectric property of fly ash geopolymer pastes, International Journal of Minerals, Metallurgy and Materials, 18(1), pp. 94–99.

Henn, F., Garcia-Belmonte, G., Bisquert, J., Devautour-Vinot, S. and Giuntini, J. C. (2008), Dielectric losses measured in a sodium aluminosilicate glass by using electrical insulating barriers and non-isothermal experimental conditions, Journal of Non-Crystalline Solids, 354(29), pp. 3443–3450.

Hussien, B. (2011), The D.C and A.C Electrical Properties of (PMMA-Al2O3) Composites, European Journal of Scientific Research, 52(2), pp. 1450–216.

Irzaman, Maddu, A., Syafutra, H., Ismangil, A., (2010), Uji konduktivitas listrik dan dielektrik film tipis lithium tantalate (LiTaO3) yang didadah niobium pentaoksida (Nb2O5) menggunakan metode chemical solution deposition, Prosiding Seminar Nasional Fisika 2010, pp. 175–183.

Jumrat, S., Chatveera, B. and Rattanadecho, P. (2011), Dielectric properties and temperature profile of fly ash-based geopolymer mortar, International Communications in Heat and Mass Transfer. Elsevier Ltd, 38(2), pp. 242–248.

Ke, X., Bernal, S. A., Ye, N., Provis, J. L. and Yang, J. (2015), One-Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends, J. Am. Ceram. Soc. 98(1), pp. 5–11.

Khan, M. S., Sohail, M., Khattak, N. S. and Sayed, M. (2016), Industrial ceramic waste in Pakistan, valuable material for possible applications, Journal of Cleaner Production, 139, pp. 1520–1528.

Kramar, S. and Ducman, V. (2015), Mechanical Ana Microstructural

Characterization of Geoplymer Synthesized from Low Calcium Fly Ash, Chemical Industry and Chemical Engineering Quarterly, 21(1), pp. 13–22.

López, F. J., Sugita, S., Tagaya, M. and Kobayashi, T. (2014), Geopolymers Using Rice Husk Silica and Metakaolin Derivatives; Preparation and Their Characteristics, Journal of Materials Science and Chemical Engineering, 2(5), pp. 35–43.

Melar, J., Bednarik, V., Slavik, R. and Pastorek, M. (2013), Effect of hydrothermal treatment on the structure of an aluminosilicate polymer, Central European Journal of Chemistry, 11(5), pp. 782–789.

Mostafa, N. Y., Mohsen, Q. and El-Maghraby, A. (2014), Characterization of low-purity clays for geopolymer binder formulation, International Journal of Minerals, Metallurgy and Materials, 21(6), pp. 609–619.

Narang, S. B. and Bahel, S. (2010), Processing Research Low loss dielectric ceramics for microwave applications : a review, Journal of Ceramic Processing Research, 11(3), pp. 316–321.

Nurwidayati, R., Ulum, M. B., Ekaputri, J. J., Triwulan and Suprobo, P. (2016), Characterization of fly ash on geopolymer paste, Materials Science Forum, 841, pp. 118–125.

Powder Diffraction File (Type PDF-2). Diffraction Data for XRD Identification. International Centre for Diffraction data, PA USA (1997).

Ramasamy, S., Hussin, K., Abdullah, M. M. A. B., Ghazali, C. M. R., Sandu, A. V., Binhussain, M. and Shahedan, N. F. (2015), Recent dissertations on kaolin based geopolymer materials, Reviews on Advanced Materials Science, 42(1), pp. 83–91.

Riyanto, A., Ginting, O.M., and Simon, S., (2009), Pengaruh suhu sintering terhadap pembentukan gugus borosiloksan (B-O-Si) bahan keramik borosilikat berbasis silika sekam padi, Prosiding Seminar Nasional Sains MIPA dan Aplikasinya, Universitas Lampung, 1, Pp. 219–224.

Robertson, J. (2004), High density plasma enhanced chemical vapor deposition of optical thin films, The European Physical Journal Applied Physics, 28, pp. 265–291.

Sembiring, S. (2011), Synthesis and characterisation of rice Hulk silica based borosilicate (B2SiO5) Ceramics by sol-gel routes, Indonesia Journal of Chemistry. 11(1), pp. 85–89.

Sembiring, S., Simanjuntak, W., Manurung, P., Asmi, D., and Low, I.M (2014), Synthesis and Characterisation of Gel-derived Mullite Precursors from Rice Husk Silica, Ceramics International, 40(5), pp. 7067–7072.

Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., and Sebayang, K. (2016), Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes’, Ceramics International. Elsevier, 42(7), pp. 8431–8437.

Sharma, S., Medpelli, D., Chen, S. and Seo, D.-K. (2015), Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production, RSC Adv. Royal Society of Chemistry, 5(80), pp. 65454–65461.

Sturm, P., Gluth, G. J. G., Brouwers, H. J. H. and Kühne, H. C. (2016), Synthesizing one-part geopolymers from rice husk ash, Construction and Building Materials., 124, pp. 961–966.

Thakur, S., Rai, R., Bdikin, I., Valente, M. A., Pradesh, H. and Santiago, C. U. De (2016), Impedance and Modulus Spectroscopy Characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 Ceramics, Materials Research, 19(1), pp. 1–8.

Tripathi, M., Sahu, J. N., Ganesan, P., Monash, P. and Dey, T. K. (2015), Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS, Journal of Analytical and Applied Pyrolysis, 112, pp. 306–312.

Zheng, G., Cui, X., Zhang, W. and Tong, Z. (2009), Preparation of geopolymer precursors by sol-gel method and their characterization, Journal of Materials Science, 44(15), pp. 3991–3996.