skip to main content

Copolymerization of ε-caprolactone with Epichlorohydrin by a Green Catalyst, Maghnite

*Abdelghani Bouchama  -  Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences, Université d'Oran Es-Sènia BP N° 1524 El M'Naouar, 31000 Oran, Algeria
Mohammed Issam Ferrahi  -  Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences, Université d'Oran Es-Sènia BP N° 1524 El M'Naouar, 31000 Oran, Algeria

Citation Format:
Abstract

Most of the cationic initiators used in the synthesis of copolymers are expensive. They may be poisoned by products of the reaction or impurities present in the monomer feed, and contain heavy metals, such as chromium, mercury, antimony, etc., that presents environmental disposal problems for the user. Maghnite is a montmorillonite sheet silicate clay that is exchanged with protons to produce Maghnite-H+ (Mag-H+). This non-toxic and cheaper cationic catalyst was used for the copolymerization of ε-caprolactone (CL) with epichlorohydrin (ECH). The effects of the amounts of Mag-H+ and the temperature on the synthesis of poly (ε-caprolactone-co-epichlorohydrin) were studied. Increasing Maghnite-H+ proportion and temperature produced the increase in copolymerization yield. The copolymer obtained was characterized by 1H-NMR and IR spectroscopy. Copyright © 2012 BCREC UNDIP. All rights reserved.

Received: 24th September 2011, Revised: 12nd December 2011; Accepted: 9th January 2012

[How to Cite: A. Bouchama, M.I. Ferrahi, and M. Belbachir. (2012). Copolymerization of ε-caprolactone with Epichlorohydrin by a Green Catalyst, Maghnite. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1): 43-48.  doi:10.9767/bcrec.7.1.1211.43-48]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1211.43-48 ]

| View in 

Fulltext View|Download
Keywords: Maghnite; Montmorillonite; Epichlorohydrin; epsilon-caprolacton; Ring opening polymerization

Article Metrics:

  1. Theng, B. K. G. (1982). Clay activated organic reactions. Dev. Sedimentol. 35: 197-238
  2. Chen, J.H.; Huang, C.X.; Chen, Z.L. (2000). Study on the biocompatibility and toxicology of biomaterials - poly(ε-caprolactone). J. Biomed. Eng. 17:380–382
  3. LeRay, A.M.; Chiffoleau, S.; Iooss, P.;Grimandi, G.; Gouyette, A.; Daculsi, G.; Merle,C. (2003). Vancomycin encapsulation in biodegradable poly(epsilon-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials. 24:443–449. http://dx.doi.org/10.1016/S0142-9612(02)00357-5" target="_blank">CrossRef
  4. Pitt, C.G.; Jeffcoat, A.R.; Zweidinger, R.A.; Schindler, A. (1979). Sustained drug delivery systems. I. The permeability of poly(epsilon-caprolactone), poly(DL-lactic acid), and their copolymers. J. Biomed. Mater. Res. 13:497–507. http://dx.doi.org/10.1002/jbm.820130313" target="_blank">CrossRef
  5. Ye, W.P.; Du, F.S.; Jin, W.H.; Yang, J.Y.; Xu, Y. (1997). In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: Influence of composition, temperature and morphology. React. Funct. Polym. 32:161–168. http://dx.doi.org/10.1016/S1381-5148(96)00081-8" target="_blank">CrossRef
  6. Yavuz, H.; Babac, C.; Tuzlakoglu, K.; Piskin, E. (2002). Preparation and degradation of l-lactide and unknowing caprolactone homo and copolymer films. Polym. Degrad. Stab. 75:431–437 http://dx.doi.org/10.1016/S0141-3910(01)00242-7" target="_blank">CrossRef
  7. Storey, R.F.; Mullen, B.D.; Melchert, K.M. (2001). Synthesis of novel hydrophilic poly(ester-carbonates) containing pendent carboxylic acid groups. J. Macromol. Sci. Pure. Appl. Chem. 38:897– 917. http://dx.doi.org/10.1081/MA-100104943" target="_blank">CrossRef
  8. Guan, H.L.; Xie, Z.G.; Tang, Z.H.; Xu, X.Y.; Chen .X.S.; Jing, X.B. (2005). Preparation of block copolymer of epsilon-caprolactone and 2-methyl -2-carboxyl -propylene carbonate. Polymer. 46: 2817–2824. http://dx.doi.org/10.1016/j.polymer.2005.01.072" target="_blank">CrossRef
  9. Pêgo, A.P. ; Luyn, M.J.A.V.; Brouwer, L.A. ; Wachem, P.B.V.; Poot, A.A.;GrijiPma, D.W. (2003). In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response. J. Biomed. Mater. Res. 67 (A): 1044–1054. http://dx.doi.org/10.1002/jbm.a.10121" target="_blank">CrossRef
  10. Albertsson, A.C.; Eklund, M. (1995). Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride). J. Appl. Polym. Sci. 57:87–103. http://dx.doi.org/10.1002/app.1995.070570109" target="_blank">CrossRef
  11. Albertsson, A.C.; Eklund, M. (1994). Synthesis of copolymers of 1,3-dioxan-2-one and oxepan-2-one using coordination catalysts. J. Polym. Sci. Part A: Polym. Chem. 32: 265–279. http://dx.doi.org/10.1002/pola.1994.080320207" target="_blank">CrossRef
  12. Barakat, I.;Dubois, Ph.;Grandfils, Ch.; Jêrôme, R. (2001). Poly(e-caprolactone-b-glycolide) and poly(D,L-lactide-b-glycolide) diblock copolyesters: Controlled synthesis, characterization, and colloidal dispersions. J. Polym. Sci. Part A: Polym. Chem. 39: 294–306. http://dx.doi.org/10.1002/1099-0518(20010115)39:2<294::AID-POLA50>3.0.CO;2-A" target="_blank">CrossRef
  13. Bero, M.; Czapla, B.; Dobrzynski, P.; Janeczek, H.; Kasperczyk, J. (1999). Copolymerization of glycolide and ε-caprolactone, 2. Random copolymerization in the presence of tin octoate. Macromol. Chem. Phys. 200: 911–916
  14. Dzhavadyan, E.A.; Rozenberg, B.A.; Yenikolopyan, N.S. (1973). Kinetics of the copolymerization of tetrahydrofuran with ε-caprolactone. polymer. Science.U.S.S.R..15: 2235-2242. http://dx.doi.org/10.1016/0032-3950(73)90089-0" target="_blank">CrossRef
  15. Ge, H.; Hu, Y.; Jiang, X.; Cheng, D.,Yuan, Y.; Bi, H.; Yang, C. (2002) Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles.. J. Pharm. Sci. 91: 1463 – 1473. http://dx.doi.org/10.1002/jps.10143" target="_blank">CrossRef
  16. He, F.; Li, S.; Vert, M.; Zhuo, R.( 2003) Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol). Polymer. 44: 5145–5151. http://dx.doi.org/10.1016/S0032-3861(03)00562-7" target="_blank">CrossRef
  17. Brown, D.R.; Carpathica,G. (1994) Clays as catalyst and reagent supports. Ser. Clays. 45: 45-56. http://dx.doi.org/10.1016/0160-9327(94)90129-5" target="_blank">CrossRef
  18. Laszlo, P. (1987). Preparative Chemistry Using Supported Reagents. Academic. Press. San Diego
  19. Belbachir, M.; Bensaoula, A. (2006). Composition and method for catalysis using bentonites. US Patent 6,274,527 B1
  20. Harrane, A.; Meghabar, R. ; Belbachir, M. (2002). A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization. Int. J. Mol. Sci. 3: 790-800. http://www.ijms.org/papers/i3070790.pdf" target="_blank">View at Publisher
  21. Meghabar, R.; Megherbi, A.; Belbachir, M. (2003). An ecocatalyst for cationic polymerization of N-vinyl-2-pyrrolidone. Polymer. 2397

Last update:

No citation recorded.

Last update:

No citation recorded.