skip to main content

Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

*A. G. Gaikwad  -  Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

Citation Format:
Abstract

Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range) over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min) in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.

Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011

[How to Cite: A.G. Gaikwad. (2012). Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1): 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ]

| View in 

Fulltext View|Download
Keywords: Polymer membrane; carbonate ion; citric acid; metal ion; 2 2’-bipyridine

Article Metrics:

  1. Ma, S., 2009. Gas Adsorption Applications of Porous Metal–Organic Frameworks. Pure Applied Chemistry. 81 (12): 2235–2251. http://dx.doi.org/10.1351/PAC-CON-09-07-09" target="_blank">CrossRef
  2. Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., Férey, G., (...), Van Tendeloo, G. 2011. Stable Polyoxometalate Insertion within the Mesoporous Metal Organic Framework MIL-100(Fe). Material Chemistry. 21: 1226-1233. http://dx.doi.org/10.1039/c0jm02381g" target="_blank">CrossRef
  3. Atci, E., Erucar, I., Keskin, S. 2011, Adsorption and Transport of CH4, CO2, H2 Mixtures in a Bio-MOF Material from Molecular Simulations. The Journal of Physical and Chemistry C. 115: 6833–6840. http://dx.doi.org/10.1021/jp200429x" target="_blank">CrossRef
  4. Mu, B., Schoenecker, P.M., Walton, K.S. 2010. Gas Adsorption Study on Mesoporous Metal−Organic Framework UMCM-1. The Journal of Physical Chemistry C. 114 (14): 6464–6471 http://dx.doi.org/10.1021/jp906417z" target="_blank">CrossRef
  5. Grant Glover, T., Peterson, G.W., Schindler, B.J., Britt, D., Yaghi, O. MOF-74 Building Unit has a Direct Impact on Toxic Gas Adsorption. Chemical Engineering Science. 66: 163–170. http://dx.doi.org/10.1016/j.ces.2010.10.002" target="_blank">CrossRef
  6. Fang, Q.-R., Yuan, D.-Q., Sculley, J., Li, J.-R., Han, Z.-B., Zhou, H.-C. 2010. Functional Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry. 49 (24): 11637–11642. http://dx.doi.org/10.1021/ic101935f" target="_blank">CrossRef
  7. Jones, C.W. 2011. CO2 Capture from Dilute Gases as a Component of Modern Global Carbon Management. Annual Review Chemical Biomolecular Engineering. 2: 31-52. http://dx.doi.org/10.1146/annurev-chembioeng-061010-114252" target="_blank">CrossRef
  8. Lan, Y.-Q., Jiang, H.-L., Li, S.-L., Xu, Q. 2011. Mesoporous Metal-Organic Frameworks with Size-Tunable Cages: Selective CO2 Uptake, Encapsulation of Ln3+ Cations for Luminescence, and Column-Chromatographic Dye Separation. Advance Material. 23 (43):5015–5020. http://dx.doi.org/10.1002/adma.201102880" target="_blank">CrossRef
  9. Sadakiyo, M., Yamada, T., Kitagawa, H. 2011. Hydroxyl Group Recognition by Hydrogen-Bonding Donor and Acceptor Sites Embedded in a Layered Metal–Organic Framework. Journal of American Chemical Society. 133 (29):11050–11053. http://dx.doi.org/10.1021/ja203291n" target="_blank">CrossRef
  10. Klein, N., Senkovska, I., Gedrich, K., Stoeck, U., Henschel, A., Mueller, U., Kaskel, S. 2009. Mesoporous Metal–Organic Framework. Angewandte Chemie International Edition. 48 (52) :9954–9957. http://dx.doi.org/10.1002/anie.200904599" target="_blank">CrossRef
  11. Wang, C., Xie, Z., Dekrafft, K.E., Lin, W. 2011. Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of American Chemical Society. 133 (34): 13445–13454 http://dx.doi.org/10.1021/ja203564w" target="_blank">CrossRef
  12. Young, K.P., Sang, B.C., Hyunuk, K., Kimoon, K., Byoung-Ho, W., Kihang, C., Jung-Sik, C., (...), Jaheon, K. 2007. Crystal Structure and Guest Uptake of a Mesoporous Metal–Organic Framework Containing Cages of 3.9 and 4.7nm in Diameter. Angewandte Chemie International Edition. 119: 1 – 5
  13. Custelcean, R., Moyer, B.A. 2007. Anion Separation with Metal–Organic Frameworks, European Journal of Inorganic Chemistry 2007 (10): 1321–1340. http://dx.doi.org/10.1002/ejic.200700018" target="_blank">CrossRef
  14. Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., (...), Yaghi, O.M. 2010. Ultrahigh Porosity in Metal-Organic Frameworks. Science. 329 (5990): 424-428. http://dx.doi.org/10.1126/science.1192160" target="_blank">CrossRef
  15. Sungur, Ş., Babaoǧlu, S. 2005. Synthesis of a New Cellulose Ion Exchanger and Use for the Separation of Heavy Metals in Aqueous Solutions. Separation Science and Technology. 40 (10): 2067-2078. http://dx.doi.org/10.1081/SS-200068481" target="_blank">CrossRef
  16. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., (...), Gref, R. 2010, Porous Metal–Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nature Materials. 9: 172–178. http://dx.doi.org/10.1038/nmat2608" target="_blank">CrossRef
  17. Monge-Marcet, A., Pleixats, R., Cattoën, X., Wong Chi Man, M. 2011. Imidazolium-Derived Organosilicas for Catalytic Applications. Catalysis Science & Technology, 1: 1544–1563. http://dx.doi.org/10.1039/c1cy00287b" target="_blank">CrossRef
  18. Wiersum, A.D., Soubeyrand-Lenoir, E., Yang, Q., Moulin, B., Guillerm, V., Yahia, M.B., Bourrelly, S., (...), Llewellyn, P.L. 2011. An Evaluation of UiO-66 for Gas-based Applications, Chemistry – An Asian Journal. 6: 3270 – 3280. http://dx.doi.org/10.1002/asia.201100201" target="_blank">CrossRef
  19. Teply, F., 2011. Photoredox Catalysis by [Ru(bpy)3]2+ to Trigger Transformations of Organic Molecules, Organic Synthesis using Visible-light Photocatalysis and its 20th Century Roots, Collection of Czechoslovak Chemical Communications, 76 (7): 859–917. http://dx.doi.org/10.1135/cccc2011078" target="_blank">CrossRef
  20. Neumann, M.; Füldner, S.; König, B.; and Zeitler, K.; 2011. Metal-Free, Cooperative Asymmetric Organophotoredox Catalysis with Visible Light, Angewandte Chemie International Edition. 50 (4): 951–954. http://dx.doi.org/10.1002/anie.201002992" target="_blank">CrossRef
  21. Chen, Y., Fan, Q.-L., Wang, P., Zhang, B., Huang, Y.-Q., Zhang, G.-W., Lu, X.-M., (...), Huang, W. 2006. A Bipyridine-Containing Water-soluble Conjugated Polymer: Highly Efficient Fluorescence Chemosensor for Convenient Transition Metal Ion Detection in Aqueous Solution. Polymer, 47(15): 5228-5232. http://dx.doi.org/10.1016/j.polymer.2006.05.045" target="_blank">CrossRef
  22. Zhang, B. S.; Qiu J. P.; Liu, L. H.; and Xu, W.; 2010. Tetra-aqua-(2,2'-bipyridine-κN,N')magnesium(II) Bis-(4-fluoro-benzoate), Acta Crystallographica Section E. E66: m1426-m1426. http://dx.doi.org/10.1107/S1600536810041474" target="_blank">CrossRef
  23. Baruah, J.B. 2011. Synthesis of First Row Transition Metal Carboxylate Complexes by Ring Opening Reactions of Cyclic Anhydrides. Journal of Chemical Science. 123 (2): 123–129. http://www.ias.ac.in/chemsci/Pdf-Mar2011/4.pdf" target="_blank">View at Publisher
  24. Capone, S.; De-Robertis, A.; De-Stefano, C.; and Scarcella, R., 1985. Thermodynamics of Formation of Magnesium, Calcium, Strontium and Barium Complexes with 2,2'-Bipyridyl and 1,10-Phenanthroline, at Different Ionic Strengths in Aqueous solution, Talanta. 32(8):675-677. http://dx.doi.org/10.1016/0039-9140(85)80168-5" target="_blank">CrossRef
  25. Bishop, L.A., Turner, M.A., Kool, L.B. 1998. Kool, Synthesis of Bipyridine and Biquinoline Complexes of Group 4-Metallocenes. Journal of Organometallic Chemistry. 553(1-2): 53-57. http://dx.doi.org/10.1016/S0022-328X(97)00467-1" target="_blank">CrossRef
  26. Marshall, W. E.; Wartelle, L. H., and Chatters, A. Z., 2001. Comparison of Attrition in Citric Acid Modified Soybean Hulls and Commercial Cation Exchange Resins. Industrial Crops and Products. 13: 163–169. http://dx.doi.org/10.1016/S0926-6690(00)00063-7" target="_blank">CrossRef
  27. Wartelle, L. H., and Marshall, W. E., 2000. Citric Acid Modified Agricultural by-Products as Copper Ion Adsorbents. Advances in Environmental Research. 4: 1–7. http://dx.doi.org/10.1016/S1093-0191(00)00002-2" target="_blank">CrossRef
  28. Altundogan, H. S.; Arslan, N. E., and Tumen, F. 2007. Copper Removal from Aqueous Solutions by Sugar Beet Pulp Treated by NaOH and Citric Acid. Journal of Hazardous Materials. 149 :432–439. http://dx.doi.org/10.1016/j.jhazmat.2007.04.008" target="_blank">CrossRef
  29. Londesborough, J.C., Dalziel, K. 1971. Determination of the Stability Constant of the Magnesium-ion Complex of Isocitrate. European Journal of Biochemistry. 23:194-197. http://dx.doi.org/10.1111/j.1432-1033.1971.tb01608.x" target="_blank">CrossRef
  30. Ochromowicz, K., and Apostoluk, W., 2010. Modelling of Carrier Mediated Transport of Chromium (III) in the Supported Liquid Membrane System with D2EHPA. Separation and Purification Technology. 72: 112– 117. http://dx.doi.org/10.1016/j.seppur.2010.01.013" target="_blank">CrossRef

Last update:

No citation recorded.

Last update:

No citation recorded.