-
The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO-CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O
Cecilia J.A..
Catalysis Today,
127 ,
2015.
doi: 10.1016/j.cattod.2015.02.012
-
Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size
Scirè S..
Applied Catalysis A: General,
127 ,
2016.
doi: 10.1016/j.apcata.2016.04.011
-
Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature
Dey S..
Polyhedron,
127 ,
2018.
doi: 10.1016/j.poly.2018.08.027
-
Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production
Zhu X..
Progress in Energy and Combustion Science,
75 ,
2019.
doi: 10.1016/j.pecs.2019.100784
-
Environment-Dependent Catalytic Performance and Phase Stability of Co3O4in the Preferential Oxidation of Carbon Monoxide Studied in Situ
Nyathi T.M..
ACS Catalysis,
10 (20),
2020.
doi: 10.1021/acscatal.0c02653
-
Meso-macroporous Al2O3 supported Ru catalysts for CO preferential oxidation in hydrogen-rich gases
Shen L..
Journal of Natural Gas Chemistry,
21 (6),
2012.
doi: 10.1016/S1003-9953(11)60416-7
-
Intrazeolite CO Methanation by Small Ruthenium Carbonyl Complexes: Translation from Free Clusters into the Cage
Mravak A..
ChemCatChem,
12 (15),
2020.
doi: 10.1002/cctc.202000716
-
Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation
Polychronopoulou K..
Molecular Catalysis,
127 ,
2017.
doi: 10.1016/j.molcata.2016.11.039
-
High temperature electrochemical hydrogen pump cell using a PBI membrane at high current densities
Petek T..
ECS Transactions,
50 (2),
2012.
doi: 10.1149/05002.2153ecst
-
Effect of Zr Content on the Activity of 5%СuO/Ce1– xZrxO2 Catalysts in CO Oxidation by Oxygen in the Excess of Hydrogen
Il’ichev A.N..
Kinetics and Catalysis,
60 (5),
2019.
doi: 10.1134/S002315841905001X
-
CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas
Zhu X..
Journal of Energy Chemistry,
26 (5),
2017.
doi: 10.1016/j.jechem.2017.06.006
-
Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H 2 -rich stream
Boukha Z..
International Journal of Hydrogen Energy,
44 (25),
2019.
doi: 10.1016/j.ijhydene.2018.12.157
-
CO oxidation by oxygen of the catalyst and by gas-phase oxygen over (0.5–15)%CoO/ZrO2
Il’ichev A.N..
Kinetics and Catalysis,
58 (3),
2017.
doi: 10.1134/S0023158417030089
-
Property and structure of various platinum catalysts for low-temperature carbon monoxide oxidations
Dey S..
Materials Today Chemistry,
16 ,
2020.
doi: 10.1016/j.mtchem.2019.100228
-
Recent Advances in Preferential Oxidation of CO in H2 Over Gold Catalysts
Lakshmanan P..
Catalysis Surveys from Asia,
18 (2),
2014.
doi: 10.1007/s10563-014-9167-x
-
Study of hopcalite (CuMnOx) catalysts prepared through a novel route for the oxidation of carbon monoxide at low temperature
Dey S..
Bulletin of Chemical Reaction Engineering & Catalysis,
12 (3),
2017.
doi: 10.9767/bcrec.12.3.882.393-407
-
Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects
Maleki H..
Applied Catalysis B: Environmental,
127 ,
2018.
doi: 10.1016/j.apcatb.2017.08.012
-
Preferential oxidation of CO on Ni/CeO2 catalysts in the presence of excess H2 and CO2
Malwadkar S..
Reaction Kinetics, Mechanisms and Catalysis,
107 (2),
2012.
doi: 10.1007/s11144-012-0477-6
-
Photocatalyzed preferential oxidation of CO under simulated sunlight using Au-transition metal oxide-sepiolite catalysts
Rodríguez Aguado E..
Dalton Transactions,
49 (13),
2020.
doi: 10.1039/c9dt04243a
-
Fuel processor - Fuel cell integration: Systemic issues and challenges
Kalmula B..
Renewable and Sustainable Energy Reviews,
45 ,
2015.
doi: 10.1016/j.rser.2015.01.034
-
Sulphur-tolerant catalysts in small-scale hydrogen production, a review
Hulteberg C..
International Journal of Hydrogen Energy,
37 (5),
2012.
doi: 10.1016/j.ijhydene.2011.12.001
-
Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization
Rossetti I..
Chemical Engineering Journal,
127 ,
2015.
doi: 10.1016/j.cej.2015.08.045
-
Preferential oxidation of CO in a hydrogen rich feed stream using Co-Fe mixed metal oxide catalysts prepared from hydrotalcite precursors
Qwabe L..
Journal of Molecular Catalysis A: Chemical,
127 ,
2015.
doi: 10.1016/j.molcata.2015.04.020
-
Low temperature water-gas shift: Enhancing stability through optimizing rb loading on pt/zro2
Watson C.D..
Catalysts,
11 (2),
2021.
doi: 10.3390/catal11020210
-
Egg-shell CuO/CeO2/Al2O3 catalysts for CO preferential oxidation
Mariño F..
International Journal of Hydrogen Energy,
40 (34),
2014.
doi: 10.1016/j.ijhydene.2015.03.051
-
Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation
Singhania A..
Beilstein Journal of Nanotechnology,
8 (1),
2017.
doi: 10.3762/bjnano.8.29
-
Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: Synergistic effects and structural organization of active components
Ellert O.G..
Russian Chemical Reviews,
83 (8),
2014.
doi: 10.1070/RC2014v083n08ABEH004432
-
CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream
Cecilia J.A..
Catalysis Today,
127 ,
2015.
doi: 10.1016/j.cattod.2015.01.040
-
The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: A gas-phase approach
Lang S.M..
Angewandte Chemie - International Edition,
53 (21),
2014.
doi: 10.1002/anie.201310134
-
Catalytic behaviour of CuO-CeO2 systems prepared by different synthetic methodologies in the CO-PROX reaction under CO2-H2O feed stream
Cecilia J.A..
Catalysts,
7 (5),
2017.
doi: 10.3390/catal7050160
-
Synthesis of highly active Cobalt catalysts for low temperature CO oxidation
Dey S..
Chemical Data Collections,
24 ,
2019.
doi: 10.1016/j.cdc.2019.100283
-
Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting
Pai Y..
Journal of Power Sources,
127 ,
2013.
doi: 10.1016/j.jpowsour.2012.12.078
-
The Effect of the Copper Oxide Content and Support Structure in (0.5−15%)СuО/ZrO2 Catalysts on Their Activity in the CO Oxidation Reaction with Oxygen in an Excess of Hydrogen
Il’ichev A.N..
Kinetics and Catalysis,
59 (2),
2018.
doi: 10.1134/S002315841802009X
-
CO oxidation with oxygen of the catalyst and gas-phase oxygen over (0.5−15)%СоО/СеО2
Il’ichev N..
Kinetics and Catalysis,
57 (5),
2016.
doi: 10.1134/S0023158416050104
-
One-step synthesis of AuCu/TiO2catalysts for CO preferential oxidation
Alencar C.S.L..
Materials Research,
23 (5),
2020.
doi: 10.1590/1980-5373-MR-2020-0181
-
Effect of crystallite size on the performance and phase transformation of Co3O4/Al2O3 catalysts during CO-PrOx-an: In situ study
Nyathi T..
Faraday Discussions,
127 ,
2017.
doi: 10.1039/c6fd00217j
-
Ru–Pd bimetallic catalysts supported on CeO2-MnOx oxides as efficient systems for H2 purification through CO preferential Oxidation
Fiorenza R..
Catalysts,
8 (5),
2018.
doi: 10.3390/catal8050203
-
Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.90Co0.10O2-δ) catalyst in total and preferential CO oxidation
Cwele T..
Applied Catalysis B: Environmental,
127 ,
2016.
doi: 10.1016/j.apcatb.2015.08.043
-
Highly dispersed Ru on K-doped meso-macroporous SiO2 for the preferential oxidation of CO in H2-rich gases
Niu T..
International Journal of Hydrogen Energy,
39 (25),
2014.
doi: 10.1016/j.ijhydene.2014.03.155
-
Cu-Ce-O catalyst revisited for exceptional activity at low temperature CO oxidation reaction
Zedan A.F..
Surface and Coatings Technology,
127 ,
2018.
doi: 10.1016/j.surfcoat.2018.09.035
-
Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases
Niu T..
Journal of Porous Materials,
20 (4),
2013.
doi: 10.1007/s10934-012-9654-2
-
Au/Co 3O 4-TiO 2 catalysts for preferential oxidation of CO in H 2 stream
Chen Y..
Journal of Molecular Catalysis A: Chemical,
127 ,
2012.
doi: 10.1016/j.molcata.2012.07.027
-
Metal–Organic framework-based sustainable Nanocatalysts for CO Oxidation
Lozano L..
Nanomaterials,
10 (1),
2020.
doi: 10.3390/nano10010165
-
A high efficient two phase CuO/Cu 2(OH) 3NO 3(Co 2 +/Fe 3 +) composite catalyst for CO-PROX reaction
Veselovskyi V.L..
Catalysis Communications,
18 ,
2012.
doi: 10.1016/j.catcom.2011.11.024
-
Preferential CO oxidation over supported Pt catalysts
Jeon K..
Korean Journal of Chemical Engineering,
33 (6),
2016.
doi: 10.1007/s11814-016-0050-5
-
Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications
Lotrič A..
Journal of Power Sources,
127 ,
2014.
doi: 10.1016/j.jpowsour.2014.07.072
-
Recent Advances in Design of Gold-Based Catalysts for H2 Clean-Up Reactions
Tabakova T..
Frontiers in Chemistry,
7 ,
2019.
doi: 10.3389/fchem.2019.00517
-
(Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation
Kovalskii A.M..
Chemical Engineering Journal,
127 ,
2020.
doi: 10.1016/j.cej.2020.125109
-
Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas
Zhu X..
International Journal of Hydrogen Energy,
43 (29),
2018.
doi: 10.1016/j.ijhydene.2018.05.030
-
Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes
Ishida T..
Chemical Reviews,
120 (2),
2020.
doi: 10.1021/acs.chemrev.9b00551
-
Low temperature-high selectivity carbon monoxide methanation over yttria-stabilized zirconia-supported Pt nanoparticles
Isaifan R.J..
International Journal of Hydrogen Energy,
42 (19),
2017.
doi: 10.1016/j.ijhydene.2017.01.049
-
Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO oxidation
Dey S..
Bulletin of Chemical Reaction Engineering & Catalysis,
12 (3),
2017.
doi: 10.9767/bcrec.12.3.900.437-451
-
Comparative study of magnesia-supported highly-dispersed CuO solids prepared by different methods in CO oxidation
Kosmambetova G..
Canadian Journal of Chemical Engineering,
95 (8),
2017.
doi: 10.1002/cjce.22795
-
Structural Organization of Nanophase Catalysts for Preferential CO Oxidation
Kosmambetova G.R..
Theoretical and Experimental Chemistry,
50 (5),
2014.
doi: 10.1007/s11237-014-9376-4
-
Citrate complexation microwave-assisted synthesis of Ce0.8Zr0.2O2 nanocatalyst over Al2O3 used in CO oxidation for hydrogen purification: Influence of composite loading and synthesis method
Rezaee L..
RSC Advances,
6 (40),
2016.
doi: 10.1039/c6ra02973f
-
Synthesis and characterization of Rh/MnO2-CeO2/Al2O3 catalysts for CO-PrOx reaction
Martínez T L..
Molecular Catalysis,
127 ,
2017.
doi: 10.1016/j.mcat.2017.06.018
-
Selective oxidation of CO in H 2-rich stream over Au/CeO 2 and Cu/CeO 2 catalysts: An insight on the effect of preparation method and catalyst pretreatment
Scirè S..
Applied Catalysis A: General,
127 ,
2012.
doi: 10.1016/j.apcata.2011.12.025
-
A study on catalytic hydrogen production: Thermodynamic and experimental analysis of serial OSR-PROX system
Başar M..
Fuel Processing Technology,
127 ,
2018.
doi: 10.1016/j.fuproc.2018.06.002