A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases

A. Mishra  -  Department of Chemical Engineering and Technology, Institute of Technology, Banaras Hindu University, India
*R. Prasad  -  Department of Chemical Engineering and Technology, Institute of Technology, Banaras Hindu University, India
Received: 22 Oct 2010; Published: 16 May 2011.
Open Access
Citation Format:
Abstract

In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC). It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX) is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for COPROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 BCREC UNDIP. All rights reserved

(Received: 22nd October 2010, Revised: 12nd January 2011, Accepted: 19th January 2011)

[How to Cite: A. Mishra, R. Prasad. (2011). A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (1): 1-14. doi:10.9767/bcrec.6.1.191.1-14]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.191.1-14 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/191]

| View in 

 

Keywords: Hydrogen purification; CO-PROX; PEMFC; Methods for CO-removal; Catalysts for CO- PROX

Article Metrics:

  1. Gray, P.G.; and Frost, J.C. 1998. Impact on clean energy in road transportation. Energy Fuels 12: 1121-1129. [http://dx.doi.org/10.1021/ef980110f" target="_blank">CrossRef]
  2. Docter, A.; and Lamm, A. 1999. Gasoline fuel cell systems. J. Power Sources 84: 194-200. [http://dx.doi.org/10.1016/S0378-7753(99)00317-1" target="_blank">CrossRef]
  3. Ghenciu, A.F. 2002. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci. 6: 389-399. [http://dx.doi.org/10.1016/S1359-0286(02)00108-0" target="_blank">CrossRef]
  4. Park, E. D.; Lee, D.; and Lee, H. C. 2009. Recent progress in selective CO removal in a H2-rich stream. Catal. Today 139: 280-290. [http://dx.doi.org/10.1016/j.cattod.2008.06.027" target="_blank">CrossRef]
  5. Fuel cells handbook. 2000. EG&G Services, Parson (Ed), Science Applications International Corporation-US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 5th Ed
  6. Acres, G.J.K.; Frost, J.C.; Hards, G.A.; Potter, R.J.; Ralph, T.R.; and Thompsett, D. 1997. Electrocatalysts for fuel cells. Catal. Today 38: 393-400 [http://dx.doi.org/10.1016/S0920-5861(97)00050-3" target="_blank">CrossRef]
  7. Ralph, T.R.; and Hards, G. 1998. Fuel cells: clean energy production for the new millennium. Chem. Eng. (London) 8: 334-335
  8. Woods, M. P.; Gawade, P.; Tan, B.; and Ozkan, U.S. 2010. Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles. Appl Catal B: Environ. 97: 28-35. [http://dx.doi.org/10.1016/j.apcatb.2010.03.015" target="_blank">CrossRef]
  9. Cortes, A. G.; Marquez, Y.; Alatorre, J. A.; and Dıaz, G. 2008. Selective CO oxidation in excess of H2 over high-surface area CuO/CeO2 catalysts. Catal. Today 133-135: 743-749. [http://dx.doi.org/10.1016/j.cattod.2007.12.083" target="_blank">CrossRef]
  10. Schonbrod, B.; Marino; Baronetti; F.; and Laborde, M. 2009. Catalytic performance of a copper-promoted CeO2 catalyst in the CO oxidation: Influence of the operating variables and kinetic study. Int. J. Hydrogen Energy 34: 4021-4028. [http://dx.doi.org/10.1016/j.ijhydene.2009.02.054" target="_blank">CrossRef]
  11. Al-Ghamdi, M. S. 2006. Studies on Catalysts for Preferential Oxidation of CO in H2-Rich Gas Mixture. M.S. Thesis. The Research Institute King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia
  12. Caputo, T. 2005. CuO/CeO2 catalysts for the preferential oxidation of CO in H2 rich mixture for fuel cell applications. Ph.D Thesis. Department of Chemical and Biological Engineering of the Northwestern University (Evanston, IL, USA)
  13. Chin, P. 2004. Preferential Oxidation of Carbon Monoxide on Structured Supports. Master's Thesis North Carolina State University
  14. Lakshmanan, P. 2006. Design of nanosized ceria-zirconia mixed oxides for catalytic applications, M.Sc. Thesis. Indian Institute of Chemical Technology Hyderabad, India
  15. Zhang, Y.; Ruhl, J.; Brenner, A.M.; and Gittleman, C.S. 2005. Carbon monoxide clean-up in a PEM fuel cell system. US 2005/0193627 A1
  16. Abdo, S.F.; Deboy, C.A.; and Schroeder, G.F. 2003. Preferential oxidation catalyst US 6573214 B2
  17. Shore, L.; and Farrauto, R.J. 2006. Preferential oxidation catalyst containing platinum, copper & iron. US 2006/0276332 A1
  18. Lee, H-C; Kim, S.H.; Lee, D-H; Park, E-D; and Ko, E-Y. 2008. Catalyst for oxidizing monoxide and method of preparing the same US 2008/0008926 A1
  19. We, M-C; and Weissman, J.G. 2006. Selective carbon monoxide oxidation catalyst method of making the same & systems using the same. US 7147947 B2
  20. Vanderspurt, T.H.; Wijzer, F.; Tang, X.; Leffler, M.P.; Willigan, R.R.; Newman, C.A.; Radhakrishnan, R.; Feng, F.; Laube, B. L.; Dardas, Z.; Opalka, S.M.; and She, Y. 2007. Ceria based mixed-metal of structure, including method of making & use. US 7166263 B2
  21. Kim, M.C.; Dong, Y.; Gu, S.; Si, C.; Do, C.; Son, I.H.; Dong, S.; Si, U.; and Do, G. 2007. Preferential oxidation catalyst and process for preparing the same. US 7247599 B2
  22. Freemantle, M. 2005. Membranes for gas separation. Chem. Eng. News 83: 49-57
  23. Adhikari, S.; and Fernando, S. 2006. Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45: 875-881. [http://dx.doi.org/10.1021/ie050644l" target="_blank">CrossRef]
  24. Ockwig, N. W.; and Nenoff, T. M. 2007. Membranes for Hydrogen Separation. Chem. Rev. 107: 4078-4110. [http://dx.doi.org/10.1021/cr0501792" target="_blank">CrossRef]
  25. Lu, G.Q.; Diniz da Costa, J.C.; Duke, M.; Giessler, S.; Socolowe, R.; Williams, R.H.; and Kreutz, T. 2007. Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid Interface Sci. 314: 589-603 [http://dx.doi.org/10.1016/j.matlet.2006.05.078" target="_blank">CrossRef]
  26. Adams, T. M.; and Mickalonis, J. 2007. Hydrogen permeability of multiphase V-Ti-Ni metallic membranes. Mater. Lett. 61: 817-820 [http://dx.doi.org/10.1016/S0011-9164(02)00636-7" target="_blank">CrossRef]
  27. Roa, F.; Block, M.J.; and Way, J.D. 2002. The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination 147: 411-416. [http://dx.doi.org/10.1016/S0011-9164(02)00636-7" target="_blank">CrossRef]
  28. Sotowa, K.I.; Hasegawa, Y.; Kusakabe, K.; and Morooka, S. 2002. Enhancement of CO oxidation by use of H2-selective membranes impregnated with noble-metal catalysts. Int. J. Hydrogen Energy 27: 339-346. [http://dx.doi.org/10.1016/S0360-3199(01)00115-X" target="_blank">CrossRef]
  29. Bernardo, P.; Algieri, C.; Barbieri, G.; and Drioli, E. 2008. Hydrogen purification from carbon monoxide by means of selective oxidation using zeolite catalytic membranes. Sep. Purif. Technol. 62:629-635. [http://dx.doi.org/10.1016/j.seppur.2008.03.024" target="_blank">CrossRef]
  30. Varela-Gandía, F.J.; Berenguer-Murcia, A.; Lozano-Castelló, D.; and Cazorla-Amorós, D. 2010. Hydrogen purification for PEM fuel cells using membranes prepared by ion-exchange of Na-LTA/carbon membranes; J. Membr. Sci. 351:123-130 [http://dx.doi.org/10.1016/j.memsci.2010.01.039" target="_blank">CrossRef]
  31. Takenaka, S.; Shimizu, T.; and Otsuka, K. 2004. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts; Int. J. Hydrogen Energy 29:1065-1073. [http://dx.doi.org/10.1016/j.ijhydene.2003.10.009" target="_blank">CrossRef]
  32. Dagle, R. A.; Wang, Y.; Xia, G-G; Strohm, J. J.; Holladay, J.; and Palo, D. R. 2007. Selective CO methanation catalysts for fuel processing applications. Appl. Catal. A: General 326:213-218. [http://dx.doi.org/10.1016/j.apcata.2007.04.015" target="_blank">CrossRef]
  33. Chen, S.Q.; and Liu, Y. 2009. LaFeyNi1-yO3 supported nickel catalysts used for steam; reforming of ethanol. Int. J. Hydrogen Energy 34:4735-4746. [http://dx.doi.org/10.1016/j.ijhydene.2009.03.048" target="_blank">CrossRef]
  34. Profeti L.P.R; Dias, J.A.C; Assaf, J.M.; and Assaf, E.M. 2009. Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. J. of Power Sources 190: 525-533. [http://dx.doi.org/10.1016/j.jpowsour.2008.12.104" target="_blank">CrossRef]
  35. Galletti, C.; Specchia, S.; Saracco, G.; and Specchia, V. 2010. CO-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEMFC applications. Chem. Eng. Sci. 65:590-596. [http://dx.doi.org/10.1016/j.ces.2009.06.052" target="_blank">CrossRef]
  36. Xu, G.; Chen, X.; and Zhang, Z-G. 2006. Temperature-staged methanation: An alternative method to purify hydrogen-rich fuel gas for PEMFC. Chem. Eng. J. 121: 97-107. [http://dx.doi.org/10.1016/j.cej.2006.05.010" target="_blank">CrossRef]
  37. Li, Z.; Mi, W.; Liu, S.; and Su, Q.2010. CO deep removal with a method of two-stage methanation; Int. J. Hydrogen Energy 35:2820-2823. [http://dx.doi.org/10.1016/j.ijhydene.2009.05.067" target="_blank">CrossRef]
  38. Sunny, E. I.; Mohammed, A. B.; Daud, W. R.; Kadhum, A. H.; Fisal, Z.; and Sheriff, A. M. 2000. Removal of CO from process with Sn-activated carbon in pressure swing adsorption; Journal of chemical technology and biotechnology 75: 803-811. [http://dx.doi.org/10.1002/1097-4660(200009)75:9%3c803::AID-JCTB283%3e3.0.CO;2-G" target="_blank">CrossRef]
  39. Teiseh, E.; and Capareda, S. 2010 Purification of Hydrogen from a Thermo-chemical Process using a Single-Column Pressure Swing Adsorption System with Compound Adsorbent. An ASABE Meeting Presentation Paper Number: 1009782
  40. Barelli, L.; Bidini, G.; Gallorini, F.; and Servili, S. 2008. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy 33: 554-570. [http://dx.doi.org/10.1016/j.energy.2007.10.018" target="_blank">CrossRef]
  41. Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; and Mirodatos, C. 2009. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chem. Eng.J. 155: 553-566. [http://dx.doi.org/10.1016/j.cej.2009.09.010" target="_blank">CrossRef]
  42. Sircar, S.; and Golden, T. C. 2000. Purification of Hydrogen by Pressure Swing Adsorption. Sep. Sci. Technol. 35: 5, 667-687. [http://dx.doi.org/10.1081/SS-100100183" target="_blank">CrossRef]
  43. Yang, S-I; Choi, D-Y; Jang, S-C; Kim, S-H; and Choi, D-K 2008. Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 14: 583- 590 [http://dx.doi.org/10.1007/s10450-008-9133-x" target="_blank">CrossRef]
  44. Majlan, E. H.; Daud, W. R. W.; Iyuke, S. E.; Mohamad, A. B.; Amir, A.; Adhum, H. K.; Mohammad, A.W.; Takriff, M. S.; and Bahaman N. 2009. Hydrogen purification using compact pressure swing adsorption system for fuel cell. Int. J. Hydrogen Energy 34: 2771-2777. [http://dx.doi.org/10.1016/j.ijhydene.2008.12.093" target="_blank">CrossRef]
  45. López, I.; Valdés-Solís, and T.; Marbán, G. 2008. An attempt to rank copper-based catalysts used in the CO-PROX reaction. Int. J. Hydrogen Energy 33: 197-205. [http://dx.doi.org/10.1016/j.ijhydene.2007.09.011" target="_blank">CrossRef]
  46. Hulteberg, P.C.; Brandin, J.G.M.; Silversand, F.A.; and Lundberg, M.2005. Preferential oxidation of carbon monoxide on mounted and unmounted noble-metal catalysts in hydrogen-rich streams. Int. J. Hydrogen Energy 30:1235-1242. [http://dx.doi.org/10.1016/j.ijhydene.2005.04.054" target="_blank">CrossRef]
  47. Huang, Y.; Wang, A.; Wang, X.;and Zhang, T. 2007. Preferential oxidation of CO under excess H2 conditions over iridium catalysts; Int. J. Hydrogen Energy 32: 3880 -3886. [http://dx.doi.org/10.1016/j.ijhydene.2007.03.031" target="_blank">CrossRef]
  48. Huang, Y.; Wang, A.; Li, L.; Wang, X.; Su, D.; and Zhang T. 2008. Ir-in-ceria: A highly selective catalyst for preferential CO oxidation. J. Catal. 255: 144-152. [http://dx.doi.org/10.1016/j.jcat.2008.01.024" target="_blank">CrossRef]
  49. Zhang, W.; Huang, Y.; Wang, J.; Liu, K.; Wang, X.; Wang, A.; and Zhang, T. 2010. IrFeOx/SiO2 A highly active catalyst for preferential CO oxidation in H2. Int. J. Hydrogen Energy 35: 3065-3071. [http://dx.doi.org/10.1016/j.ijhydene.2009.07.016" target="_blank">CrossRef]
  50. Tanaka, H.; Ito, S.; Kameoka, S.; Tomishige, K.; and Kunimori, K. 2003. Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen. Appl Catal. A: general 250: 255-263. [http://dx.doi.org/10.1016/S0926-860X(03)00320-X" target="_blank">CrossRef]
  51. Chin, S.Y.; Alexeev, O.S.; and Amiridis, M.D. 2005. Preferential oxidation of CO under excess H2 conditions over Ru catalysts. Appl. Catal. A: general 286: 157-166. [http://dx.doi.org/10.1016/j.apcata.2005.02.031" target="_blank">CrossRef]
  52. Kim, Y.H.; Park, E.D.; Lee, H.C.; and Lee, D. 2009. Selective CO removal in a H2-rich stream over supported Ru catalysts for the polymer electrolyte membrane fuel cell (PEMFC); Appl. Catal. A: general 366: 363-369. [http://dx.doi.org/10.1016/j.apcata.2009.07.030" target="_blank">CrossRef]
  53. Ayastuy, J.L.; Gonzalez-Marcos, M.P.; Gonzalez-Velasco, J.R.; and Gutierrez-Ortiz, M.A. 2007. MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams. Appl. Catal. B: environ.70: 532-541. [http://dx.doi.org/10.1016/j.apcatb.2006.01.028" target="_blank">CrossRef]
  54. Jo, M-C; Kwon, G-H; Li, W.; and Lane, A. M. 2009. Preparation and characteristics of pretreated Pt/alumina catalysts for the preferential oxidation of carbon monoxide. J. Ind. Eng. Chem.15: 336-341. [http://dx.doi.org/10.1016/j.jiec.2008.11.014" target="_blank">CrossRef]
  55. Liu, H., Ma, L., Shao, S., Li, Z., Wang, A., Huang, Y., Zhang, T. 2007. Preferential CO Oxidation on Ce-Promoted Pt/γ-Al2O3 Catalysts under H2-Rich Atmosphere. Chin. J. Catal. 28(12): 1077-1082. [http://dx.doi.org/10.1016/S1872-2067(08)60008-X" target="_blank">CrossRef]
  56. Atalik, B.; and Uner, D. 2006. Structure sensitivity of selective CO oxidation over Pt/γ -Al2O3. J. of Catal. 241: 268-275. [http://dx.doi.org/10.1016/j.jcat.2006.04.029" target="_blank">CrossRef]
  57. Wootsch, A.; Descorme, C.; and Duprez, D. 2004. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J. of Catal. 225: 259-266. [http://dx.doi.org/10.1016/j.jcat.2004.04.017" target="_blank">CrossRef]
  58. Kwak, C.; Park, T.J.; and Suh, D.J. 2005. Effects of sodium addition on the performance of PtCo/Al2O3 catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels; Appl. Catal. A: general 278: 181-186. [http://dx.doi.org/10.1016/j.apcata.2004.05.025" target="_blank">CrossRef]
  59. Kuriyama, M.; Tanaka, H.; Ito, S.i; Kubota, T.; Miyao, T.; Naito, S.; Tomishige K.; and Kunimori, K. 2007. Promoting mechanism of potassium in preferential CO oxidation on Pt/Al2O3. J. of Catal. 252: 39-48. [http://dx.doi.org/10.1016/j.jcat.2007.09.001" target="_blank">CrossRef]
  60. Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; and Watanabe, M. 2006. High catalytic performance of Pt-Fe alloy nanoparticles supported in mordenite pores for preferential CO oxidation in H2-rich gas. Appl. Catal. A: general 307:275-283. [http://dx.doi.org/10.1016/j.apcata.2006.04.003" target="_blank">CrossRef]
  61. Maeda, N.; Matsushima, T.; Kotobuki, M.; Miyao, T.; Uchida, H.; Yamashita, H.; and Watanabe, M. 2009. H2O-tolerant monolithic catalysts for preferential oxidation of carbon monoxide in the presence of hydrogen; Appl. Catal. A: general 370: 50-53. [http://dx.doi.org/10.1016/j.apcata.2009.09.010" target="_blank">CrossRef]
  62. Chin, P.; Sun, X.; Roberts, G.W. and Spivey, J.J. 2006. Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams. Appl. Catal. A: general 302: 22-31
  63. Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; and Watanabe, M. 2005. Pt-Fe/mordenite catalysts reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts. J of Catal 236: 262-269. [http://dx.doi.org/10.1016/j.jcat.2005.09.026" target="_blank">CrossRef]
  64. Huang, C-Y; Chen, Y-Y; Su, C-C; and Hsu, C-F. 2007. The cleanup of CO in hydrogen for PEMFC applications using Pt, Ru, Co, and Fe in PROX reaction. J. of Power Sources 174: 294-301. [http://dx.doi.org/10.1016/j.jpowsour.2007.09.017" target="_blank">CrossRef]
  65. Maeda, N.; Matsushima, T.; Uchida, H.; Yamashita, H.; and Watanabe, M. 2008. Performance of Pt-Fe/mordenite monolithic catalysts for preferential oxidation of carbon monoxide in a reformate gas for PEFCs; Appl. Catal. A: general 341: 93-97. [http://dx.doi.org/10.1016/j.apcata.2008.02.022" target="_blank">CrossRef]
  66. Tanaka, H.; Kuriyama, M.; Ishida, Y.; Ito, S.; Tomishige, K. and Kunimori K. 2008. Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals Part I. Catalytic performance; Appl. Catal. A: general 343: 117-124. [http://dx.doi.org/10.1016/j.apcata.2008.03.030" target="_blank">CrossRef]
  67. Guerrero, S., Miller, J.T., Wolf, E.E. 2007. Activity and selectivity control by niobium for the preferential oxidation of co on pt supported catalysts; Appl. Catal. A: general 328: 27-34. [http://dx.doi.org/10.1016/j.apcata.2007.04.010" target="_blank">CrossRef]
  68. Kwak, C.; Park, T.J.; and Suh, D.J. 2005. Preferential oxidation of carbon monoxide in hydrogen-rich gas over platinum-cobalt-alumina aerogel catalysts; Chem. Eng. Sci. 60: 1211-1217. [http://dx.doi.org/10.1016/j.ces.2004.07.126" target="_blank">CrossRef]
  69. Choi, J.; Shin, C. B.; Suh, D.J. 2008. Co-promoted Pt catalysts supported on silica aerogel for preferential oxidation of CO Catal. Commun. 9: 880-885. [http://dx.doi.org/10.1016/j.catcom.2007.09.036" target="_blank">CrossRef]
  70. Sebastian, V.; Irusta, S.; Mallada, R.; and Santamarıa, J. 2009. Selective oxidation of CO in the presence of H2, CO2 and H2O, on different zeolite-supported Pt catalysts. Appl. Catal. A: general 366: 242-251. [http://dx.doi.org/10.1016/j.apcata.2009.06.044" target="_blank">CrossRef]
  71. Luengnaruemitchai, A.; Nimsuk, M.; Naknam, P.; Wongkasemjit, S.; Osuwan, S. 2008. A comparative study of synthesized and commercial A-type zeolite-supported Pt catalysts for selective CO oxidation in H2-rich stream. Int. J. Hydrogen Energy 33: 206-213. [http://dx.doi.org/10.1016/j.ijhydene.2007.09.003" target="_blank">CrossRef]
  72. Naknam, P.; Luengnaruemitchai, A.; Wongkasemjit, S.; and Osuwan, S. 2007. Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic AuPt supported on zeolite catalysts. J. of Power Sources 165: 353-358. [http://dx.doi.org/10.1016/j.jpowsour.2006.12.033" target="_blank">CrossRef]
  73. Komatsu, T.; and Tamura, A. 2008. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen. J. of Catal. 258: 306-314. [http://dx.doi.org/10.1016/j.jcat.2008.06.030" target="_blank">CrossRef]
  74. de Lucas-Consuegra, A.; Princivalle, A.; Caravaca, A.; Dorado, F.; Guizard, C.; Valverde, J.L.; and Vernoux, P. 2010. Preferential CO oxidation in hydrogen-rich stream over an electrochemically promoted Pt catalyst. Appl. Catal. B: environ. 94: 281-287. [http://dx.doi.org/10.1016/j.apcatb.2009.11.019" target="_blank">CrossRef]
  75. Luengnaruemitchai, A.; Osuwan, S.; Gulari E. 2004. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst. Int. J. Hydrogen Energy 29: 429-435. [http://dx.doi.org/10.1016/j.ijhydene.2003.10.005" target="_blank">CrossRef]
  76. Wang, H.; Zhu, H.; Qin, Z.; Wang, G.; Liang, F.; Wang, J. 2008. Preferential oxidation of CO in H2 rich stream over Au/CeO2-Co3O4 catalysts. Catal. Commun. 9: 1487-1492. [http://dx.doi.org/10.1016/j.catcom.2007.12.017" target="_blank">CrossRef]
  77. Chang, L.H.; Yeh, Y.L.; Chen, Y.W. 2008. Preferential oxidation of CO in hydrogen stream over nano-gold catalysts prepared by photodeposition method. Int. J. Hydrogen Energy 33: 1965-1974. [http://dx.doi.org/10.1016/j.ijhydene.2008.01.014" target="_blank">CrossRef]
  78. Imai, H.; Date, M.; and Tsubota, S. 2008. Preferential Oxidation of CO in H2-Rich Gas at Low Temperatures over Au Nanoparticles Supported on Metal Oxides. Catal. Lett. 124: 68-73. [http://dx.doi.org/10.1007/s10562-008-9501-x" target="_blank">CrossRef]
  79. Carabineiro, S.A.C., MacHado, B.F., Bacsa, R.R., Serp, P., Draić, G., Faria, J.L., Figueiredo, J.L. 2010). Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. (Journal of Catalysis, 273 (2), pp. 191-198. [http://dx.doi.org/10.1016/j.jcat.2010.05.011" target="_blank">CrossRef]
  80. Quinet, E.; Piccolo, L.; Daly, H.; Meunier, F. C.; Morfin, F.; Valcarcel, A.; Diehl, F.; Avenier, P.; Caps, V.; and Rousset, J-L. 2008. H2-induced promotion of CO oxidation over unsupported gold Catal Today 138: 43-49. [http://dx.doi.org/10.1016/j.cattod.2008.04.042" target="_blank">CrossRef]
  81. Liotta, L.F., Di Carlo, G., Pantaleo, G., Venezia, A.M. (2010). Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 158 (1-2), pp. 56-62. [http://dx.doi.org/10.1016/j.cattod.2010.04.049" target="_blank">CrossRef]
  82. Yu, W.Y.; Lee, W. S.; Yang, C.P.; and Wan, B.Z. 2007. Low-temperature preferential oxidation of CO in a hydrogen rich stream (PROX) over Au/TiO2: Thermodynamic study and effect of gold-colloid pH adjustment time on catalytic activity. J. Chin. Inst. Chem. Eng. 38: 151-160. [http://dx.doi.org/10.1016/j.jcice.2007.01.002" target="_blank">CrossRef]
  83. Yang, Y-F; Sangeetha, P.; and Chen Y-W. 2009. Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream; Int. J. Hydrogen Energy. 34: 8912-8920. [http://dx.doi.org/10.1016/j.ijhydene.2009.08.087" target="_blank">CrossRef]
  84. Dai, W.; Zheng, X.; Yang, H.; Chen, X.; Wang, X.; Liu, P.; and Fu, X. 2009. The promoted effect of UV irradiation on preferential oxidation of CO in an H2-rich stream over Au/TiO2. J. of Power Sources 188: 507-514. [http://dx.doi.org/10.1016/j.jpowsour.2008.12.028" target="_blank">CrossRef]
  85. Mozer, T. S.; Dziubal, D. A.; Vieira, C.T.P.; and Passos, F. B. 2009. The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts. J. of Power Sources 187: 209-215. [http://dx.doi.org/10.1016/j.jpowsour.2008.10.068" target="_blank">CrossRef]
  86. Tafin, M.L.; Chaou, A.A.; Morfin, F.; Caps, V.; and Rousset, J.L. 2005. Preferential oxidation of CO in H2 over highly loaded Au/ZrO2 catalysts obtained by direct oxidation of bulk alloy. Chem. Commun., 388-390. [http://dx.doi.org/10.1039/b413646b" target="_blank">CrossRef]
  87. Monyanon, S.; Pongstabodee, S.; and Luengnaruemitchai, A. 2007. Preferential oxidation of carbon monoxide over Pt, Au monometallic catalyst, and Pt-Au bimetallic catalyst supported on ceria in hydrogen-rich reformate. J. Chin. Inst. Chem. Eng. 38: 435-441. [http://dx.doi.org/10.1016/j.jcice.2007.08.003" target="_blank">CrossRef]
  88. Ilieva, L.; Pantaleo, G.; Ivanov, I.; Zanella, R.; Venezia, A.M.; and Andreeva D. 2009. A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. Int. J. Hydrogen Energy 34: 6505- 6515 [http://dx.doi.org/10.1016/j.ijhydene.2009.05.141" target="_blank">CrossRef]
  89. Manzoli, M.; Avgouropoulos, G.; Tabakova, T.; Papavasiliou, J.; Ioannides, T.; and Boccuzzi, F. 2008. Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts. Catal. Today 138: 239-243. [http://dx.doi.org/10.1016/j.cattod.2008.05.001" target="_blank">CrossRef]
  90. Deng, W.; Jesus, J. D.; Saltsburg, H.; and Stephanopoulos M. F. 2005. Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions. Appl. Catal. A: general 291: 126-135. [http://dx.doi.org/10.1016/j.apcata.2005.02.048" target="_blank">CrossRef]
  91. Scire, S.; Crisafulli, C.; Minico, S.; Condorelli, G.G.; and Mauro A. D. 2008. Selective oxidation of CO in H2-rich stream over gold/iron oxide:An insight on the effect of catalyst pre-treatment. J. Mol. Catal. A: Chem. 284: 24-32. [http://dx.doi.org/10.1016/j.molcata.2007.12.026" target="_blank">CrossRef]
  92. Naknam, P.; Luengnaruemitchai, A.; and Wongkasemjit, S. 2009. Preferential CO oxidation over Au/ZnO and Au/ZnO-Fe2O3 catalysts prepared by photodeposition. Int. J. Hydrogen Energy 34: 9838-9846. [http://dx.doi.org/10.1016/j.ijhydene.2009.10.015" target="_blank">CrossRef]
  93. Laguna, O.H., Centeno, M.A., Arzamendi, G., Gandía, L.M., Romero-Sarria, F., Odriozola, J.A. (2010). Iron-modified ceria and Au/ceria catalysts for total and preferential oxidation of CO (TOX and PROX). Catalysis Today, 157 (1-4), pp. 155-159. [http://dx.doi.org/10.1016/j.cattod.2010.04.011" target="_blank">CrossRef]
  94. Chang, L-H; Sasirekha, N.; Rajesh, B.; and Chen, Y-W. 2007. CO oxidation on ceria- and manganese oxide-supported gold catalysts. Sep. Purif. Technol. 58: 211-218. [http://dx.doi.org/10.1016/j.seppur.2007.07.031" target="_blank">CrossRef]
  95. Marino, F.; Descorme, C.; and Duprez, D. 2005. Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Appl Catal. B: environ.58:75-183. [http://dx.doi.org/10.1016/j.apcatb.2004.12.008" target="_blank">CrossRef]
  96. Ramaswamy, V.; Malwadkar, S.; and Chilukuri, S. 2008. Cu-Ce mixed oxides supported on Al-pillared clay: Effect of method of preparation on catalytic activity in the preferential oxidation of carbon monoxide. Appl. Catal. B: environ 84: 21-29. [http://dx.doi.org/10.1016/j.apcatb.2008.02.023" target="_blank">CrossRef]
  97. Liu, Y.; Fu, Q.; and Stephanopoulos, M.F. 2004. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today 93-95: 241-246. [http://dx.doi.org/10.1016/j.cattod.2004.06.049" target="_blank">CrossRef]
  98. Prasad, R.; and Rattan, G. 2010. Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bull. Chem. React. Eng. Catal. 5 (1): 7-30. [http://dx.doi.org/10.9767/bcrec.5.1.774.7-30" target="_blank">CrossRef]
  99. Avgouropoulos, G.; Ioannides, T.; Matralis, H. 2005. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Appl. Catal. B: environ 56 (2005) 87-93 [http://dx.doi.org/10.1016/j.apcatb.2004.07.017" target="_blank">CrossRef]
  100. Liu, Z.; Zhou, and R.; Zheng, X. 2007. Preferential Oxidation of CO in Excess Hydrogen over CuO-CeO2 Catalyst Prepared by Chelating Method. J. Nat. Gas Chem. 16: 167-172. [http://dx.doi.org/10.1016/S1003-9953(07)60043-7" target="_blank">CrossRef]
  101. Marino, F.; Baronetti, G.; Laborde, M.; Bion, N.; Le Valant, A.; Epron, F.,and Duprez, D. 2008. Optimized CuO-CeO2 catalysts for CO-PROX reaction. Int. J. Hydrogen Energy 33:1345-1353
  102. Derekaya, F. B.; Kutar, C.; and Güldür, C. 2009. Selective CO oxidation over ceria supported CuO catalysts. Mater. Chem. Phys. 115: 496-501. [http://dx.doi.org/10.1016/j.ijhydene.2007.12.014" target="_blank">CrossRef]
  103. Kim, D.H.; Cha, and J.E. 2003. A CuO-CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catal. Lett. 86: 1-3. [http://dx.doi.org/10.1023/A:1022671327794" target="_blank">CrossRef]
  104. Moreno, M.; Bergamini, L.; Baronetti, G.T.; Laborde, M.A. and Marino, F.J. 2010. Mechanism of CO oxidation over CuO/CeO2 catalysts. Int. J. Hydrogen Energy 35: 5918-5924. [http://dx.doi.org/10.1016/j.ijhydene.2009.12.107" target="_blank">CrossRef]
  105. Wu, Z.; Zhu, H.; Qin, Z.; Wang, H.; Ding, J.; Huang, L.; and Wang, J. 2010. CO preferential oxidation in H2-rich stream over a CuO/CeO2 catalyst with high H2O and CO2 tolerance. Fuel. Article in press
  106. Zhang, Y.; Liang, H.; Gao, X.Y.; and Liu, Y. 2009. Three-dimensionally ordered macro-porous CuO-CeO2 used for preferential oxidation of carbon monoxide in hydrogen-rich gases. Catal. Commun.. 10: 1432-1436. [http://dx.doi.org/10.1016/j.catcom.2009.03.010" target="_blank">CrossRef]
  107. Marban, G.; Lopez, I.; and Valdes-Solıs, T. 2009. Preferential oxidation of CO by CuOx/CeO2 nanocatalysts prepared by SACOP Mechanisms of deactivation under the reactant stream. Appl. Catal. A: general 361: 160-169. [http://dx.doi.org/10.1016/j.apcata.2009.04.014" target="_blank">CrossRef]
  108. Sirichaiprasert, K.; Pongstabodee, S.; and Luengnaruemitchai, A. 2008. Single- and double-stage catalytic preferential CO oxidation in H2-rich stream over an α-Fe2O3-promoted CuO-CeO2 catalyst; J. Chin. Inst. Chem. Eng 39: 597-607. [http://dx.doi.org/10.1016/j.jcice.2008.05.008" target="_blank">CrossRef]
  109. Liu, Z.; Zhou, R.; and Zheng, X. 2006. The preferential oxidation of CO in excess hydrogen: A study of the influence of KOH/K2CO3 on CuO-CeO2-x catalysts. J. Mol. Catal. A: Chem. 255: 103-108. [http://dx.doi.org/10.1016/j.molcata.2006.04.003" target="_blank">CrossRef]
  110. Ratnasamy, P.; Srinivas, D.; Satyanarayana, C.V.V.; Manikandan, P.; Senthil Kumaran, R.S.; Sachin, M.; and Shetti, V. N. 2004. Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO-CeO2-ZrO2 system. J. of Catal. 221: 455-46. [http://dx.doi.org/10.1016/j.jcat.2003.09.006" target="_blank">CrossRef]
  111. Pakharukova, V.P.; Moroz, E.M.; Kriventsov, V.V.; Zyuzin, D.A.; Kosmambetova, G.R.; and Strizhak, P.E. 2009. Copper-cerium oxide catalysts supported on monoclinic zirconia: Structural features and catalytic behavior in preferential oxidation of carbon monoxide in hydrogen excess. Appl. Catal. A: general 365: 159-164. [http://dx.doi.org/10.1016/j.apcata.2009.06.001" target="_blank">CrossRef]
  112. Zeng, S.H.; and Liu, Y. 2010. Nd- or Zr-modified CuO-CeO2/Al2O3/FeCrAl monolithic catalysts for preferential oxidation of carbon monoxide in hydrogen-rich gases. Appl. Surf. Sci. 254: 4879-4885. [http://dx.doi.org/10.1016/j.apsusc.2008.01.168" target="_blank">CrossRef]
  113. Gu, C.; Lu, S.; Miao, J.; Liu, Y.; and Wang, Y. 2010. Mesoemacroporous monolithic CuO-CeO2/α-Al2O3 catalysts for CO preferential oxidation in hydrogen-rich gas: Effect of loading methods. Int. J. Hydrogen Energy 35: 6113 -6122. [http://dx.doi.org/10.1016/j.ijhydene.2010.03.105" target="_blank">CrossRef]
  114. Moretti, E.; Storaro, L.; Talon, A.; Patrono, P.; Pinzari, F.; Montanari, T.; Ramis, G.; and Lenarda, M. 2008. Preferential CO oxidation (CO-PROX) over CuO-ZnO/TiO2 catalysts Appl. Catal. A: general 344: 165-174. [http://dx.doi.org/10.1016/j.apcata.2008.04.015" target="_blank">CrossRef]
  115. Chen, Y-Z; Liaw, B-J; Chang, W-C; and Huang, C-T. 2007. Selective Oxidation of CO in Excess Hydrogen over CuO/CexZr1−xO2.Al2O3 catalysts. Int. J. Hydrogen Energy 32: 4550-4558. [http://dx.doi.org/10.1016/j.ijhydene.2007.06.021" target="_blank">CrossRef]
  116. Hernández, W.Y., Centeno, M.A., Romero-Sarria, F., Ivanova, S., Montes, M., Odriozola, J.A. (2010). Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen. Catalysis Today, 157 (1-4), pp. 160-165. [http://dx.doi.org/10.1016/j.cattod.2010.03.010" target="_blank">CrossRef]
  117. Valdes-Solıs, T.; Lopez, I.; and Marban, G. 2010. Copper manganite as a catalyst for the PROX reaction.Deactivation studies. Int. J. Hydrogen Energy 35: 1879-1887. [http://dx.doi.org/10.1016/j.ijhydene.2009.12.117" target="_blank">CrossRef]
  118. Zhao, Z.; Yung, M.M.; and Ozkan, U.S. 2008. Effect of support on the preferential oxidation of CO over cobalt catalysts. Catal.. Commun. 9: 1465-1471. [http://dx.doi.org/10.1016/j.catcom.2007.12.013" target="_blank">CrossRef]
  119. Yung, M.M.; Zhao, Z.;Woods, M.P.; and Ozkan, U.S. 2008. Preferential oxidation of carbon monoxide on CoOx/ZrO2. J. Mol. Catal. A: Chem. 279: 1-9. [http://dx.doi.org/10.1016/j.molcata.2007.09.026" target="_blank">CrossRef]
  120. Guo, Q.; and Liu,Y. 2008. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases. Appl. Catal. B: Environ 82: 19-26. [http://dx.doi.org/10.1016/j.apcatb.2008.01.007" target="_blank">CrossRef]
  121. Guo, Q.; Wu, M.; Liu, Y.; and Bai, X. 2007. Mesoporous CeO2- Supported Co3O4 Catalysts for CO Preferential Oxidation in H2-Rich Gases. Chin. J. Catal. 28(11): 953-957. [http://dx.doi.org/10.1016/S1872-2067(07)60082-5" target="_blank">CrossRef]
  122. Park, J.W.; Jeong, J.H.; Yoon, W.L.; Jung, H.; Lee, H.T.; Lee, D.K.; Park, Y.K.; and Rhee, Y.W. 2004. Activity and characterization of the Co-promoted CuO-CeO2/γ-Al2O3 catalyst for the selective oxidation of CO in excess hydrogen. Appl. Catal. A: general 274: 25-32. [http://dx.doi.org/10.1016/j.apcata.2004.05.012" target="_blank">CrossRef]
  123. Park, J.W.; Jeong, J. H.; Yoon, W.L.; and Rhee, Y.W. 2004. Selective oxidation of carbon monoxide in hydrogen-rich stream over Cu-Ce/γ-Al2O3 catalysts promoted with cobalt in a fuel processor for proton exchange membrane fuel cells. J. of Power Sources 132: 18-28. [http://dx.doi.org/10.1016/j.jpowsour.2003.12.059" target="_blank">CrossRef]
  124. Avgouropoulos, G.; Papavasiliou, J.; Tabakova, T.; Idakiev, V.; and Ioannides, T. 2006. A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chem. Eng. J. 124: 41-45. [http://dx.doi.org/10.1016/j.cej.2006.08.005" target="_blank">CrossRef]
  125. Chen,Y-Z; Liaw, B-J; Wang, J-M; and Huang, C-T. 2008. Selective removal of CO from hydrogen-rich stream over CuO/CexSn1-xO2-Al2O3 catalysts. Int. J. Hydrogen Energy 33: 2389-2399. [http://dx.doi.org/10.1016/j.ijhydene.2008.02.056" target="_blank">CrossRef]
  126. Ko, E-Y; Park, E. D.; Seo, K. W.; Lee, H. C.; Lee, D.; and Kim, S. 2006. A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal. Today 116:377-383. [http://dx.doi.org/10.1016/j.cattod.2006.05.072" target="_blank">CrossRef]

Last update: 2021-03-04 09:39:15

No citation recorded.

Last update: 2021-03-04 09:39:23

  1. The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO-CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O

    Cecilia J.A.. Catalysis Today, 127 , 2015. doi: 10.1016/j.cattod.2015.02.012
  2. Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size

    Scirè S.. Applied Catalysis A: General, 127 , 2016. doi: 10.1016/j.apcata.2016.04.011
  3. Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature

    Dey S.. Polyhedron, 127 , 2018. doi: 10.1016/j.poly.2018.08.027
  4. Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production

    Zhu X.. Progress in Energy and Combustion Science, 75 , 2019. doi: 10.1016/j.pecs.2019.100784
  5. Environment-Dependent Catalytic Performance and Phase Stability of Co3O4in the Preferential Oxidation of Carbon Monoxide Studied in Situ

    Nyathi T.M.. ACS Catalysis, 10 (20), 2020. doi: 10.1021/acscatal.0c02653
  6. Meso-macroporous Al2O3 supported Ru catalysts for CO preferential oxidation in hydrogen-rich gases

    Shen L.. Journal of Natural Gas Chemistry, 21 (6), 2012. doi: 10.1016/S1003-9953(11)60416-7
  7. Intrazeolite CO Methanation by Small Ruthenium Carbonyl Complexes: Translation from Free Clusters into the Cage

    Mravak A.. ChemCatChem, 12 (15), 2020. doi: 10.1002/cctc.202000716
  8. Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation

    Polychronopoulou K.. Molecular Catalysis, 127 , 2017. doi: 10.1016/j.molcata.2016.11.039
  9. High temperature electrochemical hydrogen pump cell using a PBI membrane at high current densities

    Petek T.. ECS Transactions, 50 (2), 2012. doi: 10.1149/05002.2153ecst
  10. Effect of Zr Content on the Activity of 5%СuO/Ce1– xZrxO2 Catalysts in CO Oxidation by Oxygen in the Excess of Hydrogen

    Il’ichev A.N.. Kinetics and Catalysis, 60 (5), 2019. doi: 10.1134/S002315841905001X
  11. CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas

    Zhu X.. Journal of Energy Chemistry, 26 (5), 2017. doi: 10.1016/j.jechem.2017.06.006
  12. Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H 2 -rich stream

    Boukha Z.. International Journal of Hydrogen Energy, 44 (25), 2019. doi: 10.1016/j.ijhydene.2018.12.157
  13. CO oxidation by oxygen of the catalyst and by gas-phase oxygen over (0.5–15)%CoO/ZrO2

    Il’ichev A.N.. Kinetics and Catalysis, 58 (3), 2017. doi: 10.1134/S0023158417030089
  14. Property and structure of various platinum catalysts for low-temperature carbon monoxide oxidations

    Dey S.. Materials Today Chemistry, 16 , 2020. doi: 10.1016/j.mtchem.2019.100228
  15. Recent Advances in Preferential Oxidation of CO in H2 Over Gold Catalysts

    Lakshmanan P.. Catalysis Surveys from Asia, 18 (2), 2014. doi: 10.1007/s10563-014-9167-x
  16. Study of hopcalite (CuMnOx) catalysts prepared through a novel route for the oxidation of carbon monoxide at low temperature

    Dey S.. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3), 2017. doi: 10.9767/bcrec.12.3.882.393-407
  17. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects

    Maleki H.. Applied Catalysis B: Environmental, 127 , 2018. doi: 10.1016/j.apcatb.2017.08.012
  18. Preferential oxidation of CO on Ni/CeO2 catalysts in the presence of excess H2 and CO2

    Malwadkar S.. Reaction Kinetics, Mechanisms and Catalysis, 107 (2), 2012. doi: 10.1007/s11144-012-0477-6
  19. Photocatalyzed preferential oxidation of CO under simulated sunlight using Au-transition metal oxide-sepiolite catalysts

    Rodríguez Aguado E.. Dalton Transactions, 49 (13), 2020. doi: 10.1039/c9dt04243a
  20. Fuel processor - Fuel cell integration: Systemic issues and challenges

    Kalmula B.. Renewable and Sustainable Energy Reviews, 45 , 2015. doi: 10.1016/j.rser.2015.01.034
  21. Sulphur-tolerant catalysts in small-scale hydrogen production, a review

    Hulteberg C.. International Journal of Hydrogen Energy, 37 (5), 2012. doi: 10.1016/j.ijhydene.2011.12.001
  22. Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization

    Rossetti I.. Chemical Engineering Journal, 127 , 2015. doi: 10.1016/j.cej.2015.08.045
  23. Preferential oxidation of CO in a hydrogen rich feed stream using Co-Fe mixed metal oxide catalysts prepared from hydrotalcite precursors

    Qwabe L.. Journal of Molecular Catalysis A: Chemical, 127 , 2015. doi: 10.1016/j.molcata.2015.04.020
  24. Low temperature water-gas shift: Enhancing stability through optimizing rb loading on pt/zro2

    Watson C.D.. Catalysts, 11 (2), 2021. doi: 10.3390/catal11020210
  25. Egg-shell CuO/CeO2/Al2O3 catalysts for CO preferential oxidation

    Mariño F.. International Journal of Hydrogen Energy, 40 (34), 2014. doi: 10.1016/j.ijhydene.2015.03.051
  26. Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation

    Singhania A.. Beilstein Journal of Nanotechnology, 8 (1), 2017. doi: 10.3762/bjnano.8.29
  27. Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: Synergistic effects and structural organization of active components

    Ellert O.G.. Russian Chemical Reviews, 83 (8), 2014. doi: 10.1070/RC2014v083n08ABEH004432
  28. CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream

    Cecilia J.A.. Catalysis Today, 127 , 2015. doi: 10.1016/j.cattod.2015.01.040
  29. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: A gas-phase approach

    Lang S.M.. Angewandte Chemie - International Edition, 53 (21), 2014. doi: 10.1002/anie.201310134
  30. Catalytic behaviour of CuO-CeO2 systems prepared by different synthetic methodologies in the CO-PROX reaction under CO2-H2O feed stream

    Cecilia J.A.. Catalysts, 7 (5), 2017. doi: 10.3390/catal7050160
  31. Synthesis of highly active Cobalt catalysts for low temperature CO oxidation

    Dey S.. Chemical Data Collections, 24 , 2019. doi: 10.1016/j.cdc.2019.100283
  32. Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting

    Pai Y.. Journal of Power Sources, 127 , 2013. doi: 10.1016/j.jpowsour.2012.12.078
  33. The Effect of the Copper Oxide Content and Support Structure in (0.5−15%)СuО/ZrO2 Catalysts on Their Activity in the CO Oxidation Reaction with Oxygen in an Excess of Hydrogen

    Il’ichev A.N.. Kinetics and Catalysis, 59 (2), 2018. doi: 10.1134/S002315841802009X
  34. CO oxidation with oxygen of the catalyst and gas-phase oxygen over (0.5−15)%СоО/СеО2

    Il’ichev N.. Kinetics and Catalysis, 57 (5), 2016. doi: 10.1134/S0023158416050104
  35. One-step synthesis of AuCu/TiO2catalysts for CO preferential oxidation

    Alencar C.S.L.. Materials Research, 23 (5), 2020. doi: 10.1590/1980-5373-MR-2020-0181
  36. Effect of crystallite size on the performance and phase transformation of Co3O4/Al2O3 catalysts during CO-PrOx-an: In situ study

    Nyathi T.. Faraday Discussions, 127 , 2017. doi: 10.1039/c6fd00217j
  37. Ru–Pd bimetallic catalysts supported on CeO2-MnOx oxides as efficient systems for H2 purification through CO preferential Oxidation

    Fiorenza R.. Catalysts, 8 (5), 2018. doi: 10.3390/catal8050203
  38. Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.90Co0.10O2-δ) catalyst in total and preferential CO oxidation

    Cwele T.. Applied Catalysis B: Environmental, 127 , 2016. doi: 10.1016/j.apcatb.2015.08.043
  39. Highly dispersed Ru on K-doped meso-macroporous SiO2 for the preferential oxidation of CO in H2-rich gases

    Niu T.. International Journal of Hydrogen Energy, 39 (25), 2014. doi: 10.1016/j.ijhydene.2014.03.155
  40. Cu-Ce-O catalyst revisited for exceptional activity at low temperature CO oxidation reaction

    Zedan A.F.. Surface and Coatings Technology, 127 , 2018. doi: 10.1016/j.surfcoat.2018.09.035
  41. Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases

    Niu T.. Journal of Porous Materials, 20 (4), 2013. doi: 10.1007/s10934-012-9654-2
  42. Au/Co 3O 4-TiO 2 catalysts for preferential oxidation of CO in H 2 stream

    Chen Y.. Journal of Molecular Catalysis A: Chemical, 127 , 2012. doi: 10.1016/j.molcata.2012.07.027
  43. Metal–Organic framework-based sustainable Nanocatalysts for CO Oxidation

    Lozano L.. Nanomaterials, 10 (1), 2020. doi: 10.3390/nano10010165
  44. A high efficient two phase CuO/Cu 2(OH) 3NO 3(Co 2 +/Fe 3 +) composite catalyst for CO-PROX reaction

    Veselovskyi V.L.. Catalysis Communications, 18 , 2012. doi: 10.1016/j.catcom.2011.11.024
  45. Preferential CO oxidation over supported Pt catalysts

    Jeon K.. Korean Journal of Chemical Engineering, 33 (6), 2016. doi: 10.1007/s11814-016-0050-5
  46. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    Lotrič A.. Journal of Power Sources, 127 , 2014. doi: 10.1016/j.jpowsour.2014.07.072
  47. Recent Advances in Design of Gold-Based Catalysts for H2 Clean-Up Reactions

    Tabakova T.. Frontiers in Chemistry, 7 , 2019. doi: 10.3389/fchem.2019.00517
  48. (Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation

    Kovalskii A.M.. Chemical Engineering Journal, 127 , 2020. doi: 10.1016/j.cej.2020.125109
  49. Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas

    Zhu X.. International Journal of Hydrogen Energy, 43 (29), 2018. doi: 10.1016/j.ijhydene.2018.05.030
  50. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes

    Ishida T.. Chemical Reviews, 120 (2), 2020. doi: 10.1021/acs.chemrev.9b00551
  51. Low temperature-high selectivity carbon monoxide methanation over yttria-stabilized zirconia-supported Pt nanoparticles

    Isaifan R.J.. International Journal of Hydrogen Energy, 42 (19), 2017. doi: 10.1016/j.ijhydene.2017.01.049
  52. Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO oxidation

    Dey S.. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3), 2017. doi: 10.9767/bcrec.12.3.900.437-451
  53. Comparative study of magnesia-supported highly-dispersed CuO solids prepared by different methods in CO oxidation

    Kosmambetova G.. Canadian Journal of Chemical Engineering, 95 (8), 2017. doi: 10.1002/cjce.22795
  54. Structural Organization of Nanophase Catalysts for Preferential CO Oxidation

    Kosmambetova G.R.. Theoretical and Experimental Chemistry, 50 (5), 2014. doi: 10.1007/s11237-014-9376-4
  55. Citrate complexation microwave-assisted synthesis of Ce0.8Zr0.2O2 nanocatalyst over Al2O3 used in CO oxidation for hydrogen purification: Influence of composite loading and synthesis method

    Rezaee L.. RSC Advances, 6 (40), 2016. doi: 10.1039/c6ra02973f
  56. Synthesis and characterization of Rh/MnO2-CeO2/Al2O3 catalysts for CO-PrOx reaction

    Martínez T L.. Molecular Catalysis, 127 , 2017. doi: 10.1016/j.mcat.2017.06.018
  57. Selective oxidation of CO in H 2-rich stream over Au/CeO 2 and Cu/CeO 2 catalysts: An insight on the effect of preparation method and catalyst pretreatment

    Scirè S.. Applied Catalysis A: General, 127 , 2012. doi: 10.1016/j.apcata.2011.12.025
  58. A study on catalytic hydrogen production: Thermodynamic and experimental analysis of serial OSR-PROX system

    Başar M.. Fuel Processing Technology, 127 , 2018. doi: 10.1016/j.fuproc.2018.06.002