Solid Catalysts and theirs Application in Biodiesel Production

*Ramli Mat  -  Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
Rubyatul Adawiyah Samsudin  -  Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
Mahadhir Mohamed  -  Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
Anwar Johari  -  Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
Received: 6 Apr 2012; Published: 24 Oct 2012.
Open Access
Citation Format:
Abstract

The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reserved

Received: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012

[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012). Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2): 142-149. doi:10.9767/bcrec.7.2.3047.142-149]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ]

| View in 

Keywords: Biodiesel; heterogeneous catalyst; solid acid; transesterification; esterification

Article Metrics:

  1. Hoydonckx, H.E., De Vos, D.E., Chavan, S.A. and Jacobs, P.A. (2004). Esterification and Transesterification of Renewable Chemicals: Catalytic Conversion of Renewables. Guest Editors: Herman van Bekkum and Pierre Gallezot. Topics in Catalysis. 27: 83-96). http://dx.doi.org/10.1023/B:TOCA.0000013543.96438.1a" target="_blank">CrossRef
  2. Ma, F. and Hanna, M.A. (1999). Biodiesel production: A review. Bioresource Technology. 70(1): 1-15. http://dx.doi.org/10.1016/S0960-8524(99)00025-5" target="_blank">CrossRef
  3. Freedman, B., Butterfield, R.O. and Pryde, E.H. (1986). Transesterification kinetics of soybean oil. Journal of the American Oil Chemists' Society. 63(10): 1376-1380. http://dx.doi.org/10.1007/BF02679606" target="_blank">CrossRef
  4. Zhang Y, Dube MA, McLean DD, Kates M. (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology. 89(1): 1-16. http://dx.doi.org/10.1016/S0960-8524(03)00040-3" target="_blank">CrossRef
  5. Mat R, Ling O.S, Johari A, Mohamed M. (2011) In situ biodiesel production from residual oil recovered from spent bleaching Earth. Bulletin of Chemical Reaction Engineering and Catalysis. 6(1): 53-57. http://dx.doi.org/10.9767/bcrec.6.1.678.53-57" target="_blank">CrossRef
  6. López, D.E., Goodwin, J.J.G., Bruce, D.A. and Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General. 295(2): 97-105. http://dx.doi.org/10.1016/j.apcata.2005.07.055" target="_blank">CrossRef
  7. Hattori, H. (2001). Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A: General. 222(1-2): 247-259. http://dx.doi.org/10.1016/S0926-860X(01)00839-0" target="_blank">CrossRef
  8. Ono, Y. and Baba, T. (1997). Selective reactions over solid base catalysts. Catalysis Today. 38(3): 321-337. http://dx.doi.org/10.1016/S0920-5861(97)81502-5" target="_blank">CrossRef
  9. Leclercq, E., Finiels, A. and Moreau, C. (2001). Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. Journal of the American Oil Chemists' Society. 78(11): 1161-1165. http://dx.doi.org/10.1007/s11746-001-0406-9" target="_blank">CrossRef
  10. Mazzocchia, C., Modica, G., Kaddouri, A. and Nannicini, R. (2004). Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Comptes Rendus Chimie. 7(6-7): 601-605. http://dx.doi.org/10.1016/j.crci.2003.12.004" target="_blank">CrossRef
  11. Suppes, G.J., Dasari, M.A., Doskocil, E.J., Mankidy, P.J. and Goff, M.J. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General. 257: 213-223. http://dx.doi.org/10.1016/j.apcata.2003.07.010" target="_blank">CrossRef
  12. Lotero, E., Goodwin Jr., J.G., Bruce, D.A., Suwannakarn, K., Liu, Y. and Lopez, D.E. (2006). The Catalysis of Biodiesel Synthesis. Catalysis. Royal Society of Chemistry. 19: 41-83
  13. Helwani Z, Othman M.R, Aziz N, Kim J, Fernando W.J.N. (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General.363:1-10 http://dx.doi.org/10.1016/j.apcata.2009.05.021" target="_blank">CrossRef
  14. Gryglewicz, S. (1999). Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology. 70: 249-253. http://dx.doi.org/10.1016/S0960-8524(99)00042-5" target="_blank">CrossRef
  15. Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaría, J. and Fierro, J.L.G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental. 73(3-4): 317-326. http://dx.doi.org/10.1016/j.apcatb.2006.12.017" target="_blank">CrossRef
  16. Kim, H.J., Kang, B.S., Kim, M.J., Park, Y.M., Kim, D.K., Lee, J.S. and Lee, K.Y. (2004). Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today. 93-95(1): 315-320. http://dx.doi.org/10.1016/j.cattod.2004.06.007" target="_blank">CrossRef
  17. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A. and Goodwin, J.G. (2005). Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research. 44(14): 5353-5363. http://dx.doi.org/10.1021/ie049157g" target="_blank">CrossRef
  18. Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A., GiuffrÃ, A.M. (2010) Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst. Applied Catalysis A: General.378(2): 160-168. http://dx.doi.org/10.1016/j.apcata.2010.02.016" target="_blank">CrossRef
  19. Noiroj, K., Intarapong. P., Luengnaruemitchai, A., Jai-In, S. (2009). A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy. 34(4): 1145-1150. http://dx.doi.org/10.1016/j.renene.2008.06.015" target="_blank">CrossRef
  20. Furuta, S., Matsuhashi, H., and Arata, K. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications. 5(12): 721-723. http://dx.doi.org/10.1016/j.catcom.2004.09.001" target="_blank">CrossRef
  21. Furuta, S., Matsuhashi, H. and Arata, K. (2004). Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Applied Catalysis A: General. 269(1-2): 187-191. http://dx.doi.org/10.1016/j.apcata.2004.04.017" target="_blank">CrossRef
  22. Karmee, S.K. and Chadha, A. (2005). Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology. 96 (13): 1425-1429. http://dx.doi.org/10.1016/j.biortech.2004.12.011" target="_blank">CrossRef
  23. Kulkarni, M.G. and Dalai, A.K. (2006). Waste Cooking Oil An Economical Source for Biodiesel: A Review. Industrial & Engineering Chemistry Research. 45(9): 2901-2913. http://dx.doi.org/10.1021/ie0510526" target="_blank">CrossRef
  24. Katada, N., Hatanaka, T. Ota, M. Yamada, K. Okumura, K., Niwa, M. (2009). Biodiesel production using heteropoly acid-derived solid acid catalyst H4PNbW11O40/WO3–Nb2O5. Applied Catalysis A: General, 363: 164–168. http://dx.doi.org/10.1016/j.apcata.2009.05.012" target="_blank">CrossRef
  25. Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L. and Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal. 116(1): 61-66. http://dx.doi.org/10.1016/j.cej.2005.09.025" target="_blank">CrossRef
  26. Sreeprasanth, P.S., Srivastava, R., Srinivas, D. and Ratnasamy, P. (2006). Hydrophobic, solid acid catalysts for production of biofuels and lubricants. Applied Catalysis A: General. 314(2): 148-159. http://dx.doi.org/10.1016/j.apcata.2006.08.012" target="_blank">CrossRef
  27. Furuta, S., Matsuhashi, H. and Arata, K. (2006). Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass and Bioenergy. 30(10): 870-873. http://dx.doi.org/10.1016/j.biombioe.2005.10.010" target="_blank">CrossRef
  28. Xie, W., Li, H. (2006) Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical. 255(1-2):1-9. http://dx.doi.org/10.1016/j.molcata.2006.03.061" target="_blank">CrossRef
  29. Chen, G., Fang, B. (2011). Preparation of solid acid catalyst from glucose starch mixture for biodiesel production. Bioresource Technology. 102(3): 2635-2640. http://dx.doi.org/10.1016/j.biortech.2010.10.099" target="_blank">CrossRef
  30. Srilatha, K., Sree, R., Prabhavathi Devi. B.L.A, Sai Prasad P.S., Prasad R.B.N, Lingaiah N., (2012) Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungsto- phosphoric acids. Bioresource Technology. 116: 53-57. http://dx.doi.org/10.1016/j.biortech.2012.04.047" target="_blank">CrossRef
  31. Kanakci, M. (2001). Production of Biodiesel from feedstocks with high free fatty acids and its effect on diesel engine performance and emissions. Ph.D Dissertation, Iowa State University, U.S.A
  32. Marchetti, J.M., Miguel, V.U., Errazu, A.F. (2007). Heterogeneous esterification of oil with high amount of free fatty acids. Fuel. 86(5-6): 906-190. http://dx.doi.org/10.1016/j.fuel.2006.09.006" target="_blank">CrossRef
  33. Liu, X., He, H., Wang, Y., Zhu, S., Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel. 87(2): 216-221. http://dx.doi.org/10.1016/j.fuel.2007.04.013" target="_blank">CrossRef
  34. Encinar, J.M., GonzÃlez, J.F., Pardal, A., MartÃnez, G. (2010) Rape oil transesterification over heterogeneous catalysts. Fuel Processing Technology. 91(11): 1530-1536. http://dx.doi.org/10.1016/j.fuproc.2010.05.034" target="_blank">CrossRef
  35. Fillières, R., Benjelloun-Mlayah, B. and Delmas, M. (1995). Ethanolysis of rapeseed oil: Quantitation of ethyl esters, mono-, di-, and triglycerides and glycerol by high-performance size-exclusion chromatography. Journal of the American Oil Chemists' Society. 72(4): 427-432. http://dx.doi.org/10.1007/BF02636083" target="_blank">CrossRef
  36. Srivastava, A. and Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews. 4(2): 111-133. http://dx.doi.org/10.1016/S1364-0321(99)00013-1" target="_blank">CrossRef
  37. Liu, X., He, H., Wang, Y., Zhu, S., Ziao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87: 216–221. http://dx.doi.org/10.1016/j.fuel.2007.04.013" target="_blank">CrossRef
  38. Garcia, C.M, Teixeira, S., Marciniuk, L.L. Schuchardt, U. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia, Bioresources Technology 99: 6608–6613. http://dx.doi.org/10.1016/j.biortech.2007.09.092" target="_blank">CrossRef

Last update: 2021-02-26 02:07:34

No citation recorded.

Last update: 2021-02-26 02:07:34

  1. Trans-esterification of triglycerides with methanol on sulfated zirconia prepared with different concentration of sulfuric acid

    Mat R.. Applied Mechanics and Materials, 127 , 2014. doi: 10.4028/www.scientific.net/AMM.493.15
  2. Synthesis and characterisation of rubber seed oil trans-esterified biodiesel using cement clinker catalysts

    Aarathi V.. International Journal of Sustainable Energy, 38 (4), 2019. doi: 10.1080/14786451.2017.1414052
  3. Potential applications of crude glycerol in polymer technology–Current state and perspectives

    Hejna A.. Renewable and Sustainable Energy Reviews, 66 , 2016. doi: 10.1016/j.rser.2016.08.020
  4. Biodiesel generated from Jatropha (Jatropha curcas Linn.) seeds selected based on various genotypes crossbred

    Maftuchah . Energy Reports, 6 , 2020. doi: 10.1016/j.egyr.2020.11.160
  5. Self-Solidifying Quaternary Phosphonium-Containing Ionic Liquids as Efficient and Reusable Catalysts for Biodiesel Production

    Chen J.. ACS Sustainable Chemistry and Engineering, 8 (18), 2020. doi: 10.1021/acssuschemeng.9b07432
  6. Renewable resources for polyurethanes and polyurethane composites: A review

    Haponiuk J.T.. Chemical Engineering of Polymers: Production of Functional and Flexible Materials, 2017. doi: 10.1201/9781315365985
  7. Production of biodiesel from palm oil using cockle shell waste as heterogeneous catalyst

    Ngadi N.. Jurnal Teknologi, 79 (5), 2017. doi: 10.11113/jt.v79.4503
  8. Preparation of solid catalyst suitable for biodiesel production

    Abbas A.S.. Plant Archives, 19 (2), 2019.
  9. Transesterification of waste cooking oil using calcium loaded on deoiled spent bleaching clay as a solid base catalyst

    Abidin R.Z.. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2), 2016. doi: 10.9767/bcrec.11.2.548.176-181
  10. Synthesis of pure and high surface area sodalite catalyst from waste industrial brine and coal fly ash for conversion of waste cooking oil (WCO) to biodiesel

    Aniokete T.C.. International Journal of Renewable Energy Research, 9 (4), 2019.
  11. Biodiesel synthesis from cottonseed oil using homogeneous alkali catalyst and using heterogeneous multi walled carbon nanotubes: Characterization and blending studies

    Shankar A.. Egyptian Journal of Petroleum, 26 (1), 2017. doi: 10.1016/j.ejpe.2016.04.001
  12. Biodiesel production using mixed solid catalysts

    Temu A.. Advanced Materials Research, 127 , 2013. doi: 10.4028/www.scientific.net/AMR.824.451
  13. In-situ transesterification reaction for biodiesel production

    Fauzi A.. Biomass and Bioenergy: Applications, 2015. doi: 10.1007/978-3-319-07578-5_5
  14. Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters

    Suryajaya S.K.. Renewable Energy, 127 , 2021. doi: 10.1016/j.renene.2021.01.107
  15. Improving process efficiency of gold-catalyzed hydration of alkynes: Merging catalysis with membrane separation

    A. C. A. Bayrakdar T.. Green Chemistry, 22 (8), 2020. doi: 10.1039/d0gc00498g
  16. Progress on modified calcium oxide derived waste-shell catalysts for biodiesel production

    Ooi H.K.. Catalysts, 11 (2), 2021. doi: 10.3390/catal11020194
  17. Self-solidification ionic liquids as heterogeneous catalysts for biodiesel production

    Lin X.. Green Chemistry, 21 (11), 2019. doi: 10.1039/c9gc00195f
  18. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour

    Busca G.. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour, 2014. doi: 10.1016/C2012-0-00113-5
  19. Recent developments in polyurethane foams containing low-cost and pro-ecological modifiers

    Kosmela P.. Chemistry and Chemical Technology, 10 (4), 2016. doi: 10.23939/chcht10.04si.571
  20. Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products

    Gholami Z.. Renewable and Sustainable Energy Reviews, 39 , 2014. doi: 10.1016/j.rser.2014.07.092
  21. Utilization of waste capiz shell - Based catalyst for the conversion of leather tanning waste into biodiesel

    Yuliana M.. Journal of Environmental Chemical Engineering, 8 (4), 2020. doi: 10.1016/j.jece.2020.104012
  22. Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst

    Ahmad Farid M.. Renewable Energy, 114 , 2017. doi: 10.1016/j.renene.2017.07.064