BibTex Citation Data :
@article{BCREC3171, author = {Mohammad Khunur and Andri Risdianto and Siti Mutrofin and Yuniar Prananto}, title = {Synthesis of Fluorite (CaF2) Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {7}, number = {1}, year = {2012}, keywords = {minerals; calcium; by-product; gel method; supernatant}, abstract = { This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4) by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%). Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2). © 2012 BCREC UNDIP. All rights reserved Received: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012 [ How to Cite : M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012). Synthesis of Fluorite (CaF2) Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis , 7 (1): 71-77. doi:10.9767/bcrec.7.1.3171.71-77 ] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ] | View in }, issn = {1978-2993}, pages = {71--77} doi = {10.9767/bcrec.7.1.3171.71-77}, url = {https://ejournal.undip.ac.id/index.php/bcrec/article/view/3171} }
Refworks Citation Data :
This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4) by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%). Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2). © 2012 BCREC UNDIP. All rights reserved
Received: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012
[How to Cite: M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012). Synthesis of Fluorite (CaF2) Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1): 71-77. doi:10.9767/bcrec.7.1.3171.71-77 ]
[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ]
| View in
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as: electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Bulletin of Chemical Reaction Engineering and Catalysis journal and Department of Chemical Engineering Diponegoro University.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis (BCREC) are sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Agreement Form can be downloaded here: [Copyright Transfer Form BCREC 2016] The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax : Assoc. Prof. Dr. I. Istadi (Editor-in-Chief) Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275 Telp.: +62-24-7460058, Fax.: +62-24-76480675 E-mail: bcrec@live.undip.ac.id