skip to main content

MoO3/SiO2-ZrO2 Catalyst: Eeffect of Calcination Temperature on Physico-chemical Properties and Activities in Nitration of Toluene

*Sunil Madhavrao Kemdeo  -  Department of Applied Chemistry, J.L. Chaturvedi College of Engineering, Nagpur-09,, India

Citation Format:
Abstract

12 wt % molybdena was deposited over 1:1 silica zirconia mixed oxide support and the resultant catalyst was calcined between the 500 to 700 oC range of temperature. The samples were characterized by XRD, FT-IR, BET, SEM, NH3-TPD and pyridine adsorbed FT-IR techniques.  Nitration of toluene was studied as a model reaction over the prepared catalysts and parameters like effect of reaction temperature, effect of various solvents, catalyst reusability are studied. It was found that conversion of toluene varies with the presence of Brönsted acid sites over the catalyst surface and para-nitrotoulene selectivity is associated with pore size of the catalyst. Over the same catalysts, nitration was extended for some other aromatics. Avoid of sulfuric acid in the present process is an interesting concern in view of green chemistry. Copyright © 2012 by BCREC UNDIP. All rights reserved

Keywords: MoO3/SiO2-ZrO2; SO2-ZrO2; NH3-TPD; Nitration; ortho-nitro toluene

Received: 19th May 2012, Revised: 24th May 2012, Accepted: 26th May 2012

[How to Cite: S.M. Kemdeo. (2012). MoO3/SiO2-ZrO2 Catalyst: Effect of Calcination Temperature on Physico-chemical Properties and Activities in Nitration of Toluene. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2): 92-104. doi:10.9767/bcrec.7.2.3521.92-104]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3521.92-104 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/3521]

| View in 

Fulltext View|Download
Keywords: MoO3/SiO2-ZrO2; SO2-ZrO2; NH3-TPD; Nitration; ortho-nitro toluene

Article Metrics:

  1. Chun-Yu, C., Chia-wei, W. (1996). Thermal hazard assessment and macrokinetics analysis of toluene mononitration in batch reactor. J. Loss Prev. Process Ind. 9: 309-316. http://dx.doi.org/10.1016/0950-4230(96)00022-8" target="_blank">CrossRef
  2. Glusshko, V. P., eds. (1978). Thermodynamic Properties of Individual Substances, (Vol. 1), Nauka, Moscow
  3. McKee, M., Wilhelm, R.H. (1936) Catalytic vapour phase nitration of benzene. Ind. Eng. Chem. 28: 662-667
  4. Suzuki, S., Tahmori, K., Ono Y. (1986) Vapour phase nitration over poly-organo siloxanes bearing supho groups. Chem. Lett. 15: 747-750. http://dx.doi.org/10.1246/cl.1986.747" target="_blank">CrossRef
  5. Suzuki, S., Tahmori, K., Ono Y. (1987) Preparation of sulphonated polyorganosiloxanes and their acid catalysis. J. Mol. Catal. 43: 41-50. http://dx.doi.org/10.1016/0304-5102(87)87020-7" target="_blank">CrossRef
  6. Olah, G.A., Krishnamurthy, V.V., Narang, S.C. (1982) Aromatic substitution. 50. Mercury (II)-promoted azeotropic nitration of aromatics over Nafion-H solid superacidic catalyst. J. Org. Chem. 47: 596-598. http://dx.doi.org/10.1021/jo00342a052" target="_blank">CrossRef
  7. Cornelis, A., Gerstmans, A, Laszlo, P. (1988) Regio-selective liquid phase toluene nitration with modified clay as catalyst. Chem. Lett. 11: 1839 -1842. http://dx.doi.org/10.1246/cl.1988.1839" target="_blank">CrossRef
  8. German, A., Akouz, T., Figueras, F. (1996) Vapour-phase nitration of fluorobenzene with N2O4 over aluminosilicates. Effects of structure and acidity of the catalyst. Appl. Catal. A 136: 57-68. http://dx.doi.org/10.1016/0926-860X(95)00249-9" target="_blank">CrossRef
  9. German, A., Akouz, T., Figueras, F. Vapour phase aromatic nitration with dinitrogen tetroxide over solid acids: Kinetics and mechanism (1994) J. Catal. 147: 163-170. http://dx.doi.org/10.1006/jcat.1994.1126" target="_blank">CrossRef
  10. Akolekar, D.B, Lemay, G., Sayari, A., Kaliaguine, S. (1995) High pressure nitration of toluene using nitrogen dioxide on zeolite catalysts. Res. Chem. Interm. 21: 7-16. http://dx.doi.org/10.1163/156856795X00026" target="_blank">CrossRef
  11. Laszlo, P., Vandormael, J. (1988) Regioselective Nitration of Aromatic Hydrocarbons by Metallic Nitrates on the K10 Montmorillonite under Menke Conditions. Chem. Lett. 17: 1843-1846. http://dx.doi.org/10.1246/cl.1988.1843" target="_blank">CrossRef
  12. Riego, J.M., Sedin, Z., Zaldivar, J.M., Marziano, N.C. Toratato, C. (1996) Sulfuric acid on silica-gel: an inexpensive catalyst for aromatic nitration Tetrahedron Lett. 37: 513-516. http://dx.doi.org/10.1016/0040-4039(95)02174-4" target="_blank">CrossRef
  13. Suzuki, E., Tohmori, K., Ono, Y. (1987) Vapor-phase Nitration of Benzene over Silica-supported Benzenesulfonic Acid Catalyst. Chem. Lett. 11: 2273-2274. http://dx.doi.org/10.1246/cl.1987.2273" target="_blank">CrossRef
  14. Parac-Vogt, T.N., Deleersnyder, K., Binnemans, K. (2004) Lanthanide (III) complexes of aromatic sulfonic acids as catalysts for the nitration of toluene. J. Alloys Compd. 374: 46-49. http://dx.doi.org/10.1016/j.jallcom.2003.11.062" target="_blank">CrossRef
  15. Chaubal, N.S., Sawant, M.R. (2007) Vapor phase nitration of toluene over CuFe0.8Al1.2O4.. Catal. Commun. 8: 845-849. http://dx.doi.org/10.1016/j.catcom.2006.08.031" target="_blank">CrossRef
  16. Ullmann’s Encyclopedia of Industrial Chemistry. (1991) Vol. A (17) VCH, Weinheim, pp. 411
  17. Choudary, B.M., Sateesh, M., Lakshmi Kantam, M., Koteswara Rao, K., RamPrasad, K.V., Raghavan, K.V., Sharma, J.A. R.P. (2000) Selective nitration of aromatic compounds by solid acid catalysts. Chem. Commun. 1: 25-26. http://dx.doi.org/10.1039/A908011B" target="_blank">CrossRef
  18. Bertea, L. E., Kouwenhoven, H. W., Prins, R. (1993) Catalytic vapour-phase nitration of benzene over modified Y zeolites: influence of catalyst treatment. Stud. Surf. Sci. Catal. 78: 607-614. http://dx.doi.org/10.1016/S0167-2991(08)63373-X" target="_blank">CrossRef
  19. Bertea, L. E., Kouwenhoven, H. W., Prins, R. (1995) Vapour-phase nitration of benzene over modified mordenite catalysts. Appl. Catal. A. 129: 229-250. http://dx.doi.org/10.1016/0926-860X(95)00105-0" target="_blank">CrossRef
  20. Kogelbauer, A., Vassena, D., Prins, R., Armor, J. N. (2000) Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene. Catal. Today. 55: 151-160. http://dx.doi.org/10.1016/S0920-5861(99)00234-5" target="_blank">CrossRef
  21. Smith, K., Musson, A., De Boos, G.A. (1998) A Novel Method for the Nitration of Simple Aromatic Compounds. J. Org. Chem. 63: 8448-8454. http://dx.doi.org/10.1021/jo981557o" target="_blank">CrossRef
  22. Breysse, M., Portefaix, J.L., Vrinat, M. (1991) Support effects on hydrotreating catalysts. Catal. Today 10: 489-495. http://dx.doi.org/10.1016/0920-5861(91)80035-8" target="_blank">CrossRef
  23. Vrinat, M., Breysse, M., Geantet, C., Ramireze, J., Massoth, F.E. (1994) Effect of MoS2 morphology on the HDS activity of hydrotreating catalysts. Catal. Lett. 26 (1994) 25-35. http://dx.doi.org/10.1007/BF00824029" target="_blank">CrossRef
  24. Rana, M.S., Maity, S.K., Ancheyta, J., Murali Dhar, G., Prasada Rao, T.S.R. (2003) TiO2–SiO2 supported hydrotreating catalysts: physico-chemical characterization and activities. Appl. Catal. A 253: 165-176. http://dx.doi.org/10.1016/S0926-860X(03)00502-7" target="_blank">CrossRef
  25. Rana, M.S., Srinivas, B.N., Maity, S.K., Murali Dhar, G., Prasada Rao, T.S.R. (1999) Catalytic functionalities of TiO2 based SiO2, Al2O3, ZrO2 mixed oxide hydroprocessing catalysts. Stud. Surf. Sci. Catal. 127: 397-400. http://dx.doi.org/10.1016/S0167-2991(99)80439-X" target="_blank">CrossRef
  26. Gonella, F., Matter, G., Mazzoldi, P. (1999) Structural and Optical Properties of Silver-Doped Zirconia and Mixed Zirconia−Silica Matrices Obtained by Sol−Gel Processing. Chem. Mater. 11:814-821. http://dx.doi.org/10.1021/cm980749x" target="_blank">CrossRef
  27. Gomez, R., Tzompantzi, F., Lopez, T., Navaro, O. (1994) ZrO2−SiO2 mixed oxides as supports for platinum catalysts. React. Kinet. Catal. Lett. 53: 245-251. http://dx.doi.org/10.1007/BF02073027" target="_blank">CrossRef
  28. Damyanova, S., Petrov, L., Centeno, M.A., Grange, P. (2002) Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2-Al2O3 and ZrO2-SiO2 carriers. Appl. Catal. A. 224: 271-284. http://dx.doi.org/10.1016/S0926-860X(01)00849-3" target="_blank">CrossRef
  29. Kamiya, K., Sakka, S., Tatemichi, Y. (1980) Preparation of glass fibres of the ZrO2-SiO2 and Na2O-ZrO2-SiO2 systems from metal alkoxides and their resistance to alkaline solution. J. Mater. Sci. 15: 1765-1771. http://dx.doi.org/10.1007/BF00550596" target="_blank">CrossRef
  30. Reddy, B. M., Sreekanth, P. M., Yamada, Y., Xu, Q., Kobayashi, T. (2002) Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques. Appl. Catal. A 228: 269-278. http://dx.doi.org/10.1016/S0926-860X(01)00982-6" target="_blank">CrossRef
  31. Reddy, B. M., Chowdhury, B. (1998) Dispersion and Thermal Stability of MoO3 on TiO2-ZrO2 Mixed Oxide Support. J. Catal. 179: 413-419. http://dx.doi.org/10.1006/jcat.1998.2221" target="_blank">CrossRef
  32. Chen, K., Xie, S., Iglesia, E., Bell, A.T. Structure and Properties of Zirconia-Supported Molybdenum Oxide Catalysts for Oxidative Dehydrogenation of Propane. J. Catal. 189: 421-430. http://dx.doi.org/10.1006/jcat.1999.2720" target="_blank">CrossRef
  33. Nyquist, R.A., Putzig, C.L., Leugers M.A. eds. (1997) Handbook of Infrared and Raman spectra of Inorganic Compounds and Organic Salts. 295-350. Academic Press, New York
  34. Pecharroman, C., Ocana, M., Tartaj P., and Serna, C.J.(1994) Infrared optical properties of zircon. Mater. Res. Bull. 29: 417-426. http://dx.doi.org/10.1016/0025-5408(94)90074-4" target="_blank">CrossRef
  35. Dawson, P., Hargreave, M., Wilkison, G. (1971) The vibrational spectrum of zircon (zrsio4) J. Phys. C. 4: 240-256. http://dx.doi.org/10.1088/0022-3719/4/2/014" target="_blank">CrossRef
  36. Rayner Jr., G. B. (2002) Spectroscopic Investigation of Local Bonding in Zirconium Silicate High-k Dielectric Alloys for Advanced Microelectronic Applications. Ph.D. thesis, Department of physics, North Carolina State University, Raleigh
  37. Mohamed, M.M., Salama, T.M., Yamaguchi, T. (2002) Synthesis, characterization and catalytic properties of titania–silica catalysts. Coll. Surf. A 207: 25-32. http://dx.doi.org/10.1016/S0927-7757(02)00002-X" target="_blank">CrossRef
  38. Mao, D., Lu, G., Chen, Q. (2004) Influence of calcination temperature and preparation method of TiO2–ZrO2 on conversion of cyclohexanone oxime to ε-caprolactam over B2O3/TiO2–ZrO2 catalyst. Appl. Catal. A 263: 83-89. http://dx.doi.org/10.1016/j.apcata.2003.12.028" target="_blank">CrossRef
  39. Maria, J.P., Wicaksana, D., Kingon, A.I., Busch, B., Schulte, H., Garfunkel, E., and Gustafsson, T. (2001) High temperature stability in lanthanum and zirconia-based gate dielectrics. J. Appl. Phys. 90: 3476-3482. http://dx.doi.org/10.1063/1.1391418" target="_blank">CrossRef
  40. Wilk, G. D., Wallace R. W., and Anthony, J.M. (2001) High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89: 5243-5275. http://dx.doi.org/10.1063/1.1361065" target="_blank">CrossRef
  41. Lonyl, F., and Valyon, J. (2001) On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater. 47: 293-301. http://dx.doi.org/10.1016/S1387-1811(01)00389-4" target="_blank">CrossRef
  42. Sawa, M., Niwa, M., Murakami, Y. (1990) Relationship between acid amount and framework aluminum content in mordenite. Zeolites 10: 532-538. http://dx.doi.org/10.1016/S0144-2449(05)80308-2" target="_blank">CrossRef
  43. Damyanova, S., Grange, P., Delmon, B. (1997) Surface Characterization of Zirconia-Coated Alumina and Silica Carriers. J. Catal. 168: 421-430. http://dx.doi.org/10.1006/jcat.1997.1671" target="_blank">CrossRef
  44. Massoth, F.E. (1978) Characterization of Molybdena Catalysts. Adv. Catal. 27: 265-309. http://dx.doi.org/10.1016/S0360-0564(08)60058-9" target="_blank">CrossRef
  45. Anderson, J.R., Boudart, M. eds. (1996). Hydrotreating Catalysis-Science and Technology, Vol. 11, Springer-Verlag: New York
  46. Murali Dhar, G., Srinivas, B.N., Rana, M.S., Kumar,M., Maity, S. K (2003) Mixed oxide supportedhydrodesulfurization catalysts-a review. Catal. Today 86: 45-60. http://dx.doi.org/10.1016/S0920-5861(03)00403-6" target="_blank">CrossRef
  47. Zhao, B., Wang, X., Ma, H., Tang, Y. (1996) Raman spectroscopy studies on the structure of MoO3/ZrO2 solid superacid. J. Mol. Catal. A 108: 167-174. http://dx.doi.org/10.1016/1381-1169(96)00008-8" target="_blank">CrossRef
  48. Rahman, A., Lemay, G., Adnot, A., Kaliaguine, S. (1988) Spectroscopic and catalytic study of P-modified ZSM-5. J. Catal. 112: 453-463. http://dx.doi.org/10.1016/0021-9517(88)90160-1" target="_blank">CrossRef
  49. Ward, D. A., Ko, E. I. (1994) One-Step Synthesis and Characterization of Zirconia-Sulfate Aerogels as Solid Superacids. J. Catal. 150 (1994) 18-33. http://dx.doi.org/10.1006/jcat.1994.1319" target="_blank">CrossRef
  50. Lopez, T., Tzompantzi, F., Navarrete, J., Gomez, R., Boldu, J.L., Munoz, E., and Novaro, O.(1999) Free Radical Formation in ZrO2–SiO2 Sol–Gel Derived Catalysts. J. Catal. 181: 285-293. http://dx.doi.org/10.1006/jcat.1998.2308" target="_blank">CrossRef
  51. Mmalysheva, L. V., Paukshtis, E. A., Ione, K. G. (1995) Nitration of Aromatics by Nitrogen Oxides on Zeolite Catalysts: Comparison of Reaction in the Gas Phase and Solutions. Catal. Rev. Sci. Eng. 37: 179-226. http://dx.doi.org/10.1080/01614949508007095" target="_blank">CrossRef
  52. Brei, V.V., Prudius, S.V., Melezhyk, O.V. (2003) Vapour-phase nitration of benzene over superacid WO3/ZrO2catalysts. Appl. Catal. A. 239: 11–16. http://dx.doi.org/10.1016/S0926-860X(02)00383-6" target="_blank">CrossRef
  53. Yoo, J.S., Sohail, A. R., Grimmer, S. S., Shyu, J. Z. (1994) One-step hydroxylation of benzene to phenol i.gas-phase nitric acid oxidation over Fe/Mo/SiO2. Appl. Catal. A 117: 1-16. http://dx.doi.org/10.1016/0926-860X(94)80154-1" target="_blank">CrossRef
  54. March, J. eds. (1999) Advanced Organic Chemistry, Fourth ed., 524. John Wiley: New York
  55. Waller, F.J., Barrett, A.G.M., Braddock, D.C., Ramprasad, D. (1997) Lanthanide (iii) triflates as recyclable catalysts for atom economic aromatic nitration. Chem. Comm. (1997) 613-614. http://dx.doi.org/10.1039/a700546f" target="_blank">CrossRef

Last update:

No citation recorded.

Last update:

No citation recorded.