Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation

DOI: https://doi.org/10.9767/bcrec.7.2.3646.112-123

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 14-06-2012
Published: 04-12-2012
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

To examine the effect of preparation methods, four catalyst samples having same composition (CuCe5.17Zr3.83Ox/g-Al2O3 (15wt%) were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight - 100 mg, temperature - ambient to 250 oC, pressure - atmospheric, 2.5% CO in air, total feed rate - 60 ml/min.  It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. Copyright © 2012 by BCREC UNDIP. All rights reserved

Received: 14th June 2012, Revised: 8th September 2012, Accepted: 19th September 2012

[How to Cite: G. Rattan, R. Prasad, R.C.Katyal. (2012). Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2): 112-123. doi:10.9767/bcrec.7.2.3646.112-123]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3646.112-123 ]

| View in 


CO oxidation; CuO-CeO2-ZrO2/Al2O3; Catalysts preparation methods; characterization

  1. Gaurav Rattan 
    Department of Polymer Science & Chemical Technology, DTU, Delhi 110042,, India
  2. Ram Prasad 
    Department of Chemical Engineering and Technology, Institute of Technology, Banaras Hindu University,, India
  3. Ramesh Chander Katyal 
    Department of Chemical Engineering & Technology, P.U., Chandigarh 160014,, India
  1. Langmuir, I. 1922. The mechanism of the catalytic action of platinum in the reactions 2CO + O2= 2CO2 and 2H2+ O2 = 2H2O. Trans. Faraday Soc 17: 621-654. CrossRef
  2. Taylor, S.H., Hutchings, G.J., and Mirzaei, A.A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide Oxidation. Chem. Commun. 1373-1374. CrossRef
  3. Santra, A.K., and Goodman, D.W. 2002. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures. Electrochimica Acta. 47: 3595-3609. CrossRef
  4. Khoudiakov, M., and Gupta, M.C., and Deevi, S. 2004. Au/Fe2O3 nanocatalysts for CO oxidation by a deposition – precipitation technique. Nanotechnology. 15: 987–990. CrossRef
  5. Yang, F., Graciani, J., Evans, J., Liu, P., Hrbek, J., Sanz, J. F., and Jose A. 2011. Rodriguez. CO Oxidation on Inverse CeOx/Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O2. J. Am. Chem. Soc. 133: 3444–3451. CrossRef
  6. Liu, X., Wang, A., Li, L., Zhang, T., Moub, C.-Y., and Lee, J.-F. 2011. Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 278: 288–296. CrossRef
  7. White, B. E. 2007. Chemistry and Catalysis at the Surface of Nanomaterials, Ph.D. Thesis, Graduate School of Arts and Sciences, Columbia University.
  8. Choi, Y., and Stenger, H.G. 2004. Kinetics, Simulation and Insights for CO Selective Oxidation in Fuel Cell Applications, J. Power Sources 129: 246-254. CrossRef
  9. Pillai, U. R., and Deevi, S. 2006. Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B: Environ. 64: 146–151. CrossRef
  10. Cole, K. J., Carley, A. F., Crudace, M. J., Clarke, M., Taylor, S. H., and Hutchings, G. J. 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catal. Lett. 138:143–147. CrossRef
  11. Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W., and Goldfarb, D. 2000. Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chem. Mater. 12: 3715-3725. CrossRef
  12. Rynkowski, J. M. and Dobrosz-Gómez, I. 2009. Ceria-zirconia supported gold catalysts. Annales Universitatis Mariaecurie - Skłodowska Lublin–Polonia. 14: 197-217.
  13. Katz, M. 1953. The heterogeneous oxidation of carbon monoxide. Adv. Catal. 5: 177-216. CrossRef
  14. Kummer, J. T. 1986. Use of Noble Metals in Automobile Exhaust Catalysts. J. Phys. Chem. 90: 4747-4752. CrossRef
  15. Liu, Z.-P., and Hu, P. 2004. CO oxidation and NO reduction on metal surfaces: density functional theory investigations. Topics in Catal. 28(1–4): 71-78. CrossRef
  16. Bond, G. C., and Thompson, D. T. 2000. Gold-Catalysed Oxidation of Carbon Monoxide. Gold Bulletin 33(2): 41-50. CrossRef
  17. Royer, S., and Duprez, D. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. Chem. Catal. Chem. 3: 24–65. CrossRef
  18. Huang, T-J., and Tsai, D-H. 2003. CO oxidation behavior of copper and copper oxides. Catal. Lett. 87: 173-178. CrossRef
  19. Kummer, J.T. 1980. Catalysts for Automobile Emissions Control. Prog. Energy Combust. Sci. 6: 177-199. CrossRef
  20. Huang, T-J., and Yu, T-C. 1991. Calcination conditions on copper/alumina catalysts for carbon monoxide oxidation and nitric oxide reduction. Appl. Catal. 71: 275-282. CrossRef
  21. Jiang, X-Y., Zhou, R-X., Pan, P., Zhu, B., Yuan, X-X., and Zheng, X-M. 1997. Effect of the addition of La2O3 on TPR and TPD of CuO/γ-Al2O3 catalysts. Appl. Catal. A: Gen. 150: 131-141. CrossRef
  22. Aguila, G., Gracia, F., and Araya, P. 2008. CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A: Gen. 343: 16–24. CrossRef
  23. Liu, W., and Flytzani-Stephanopoulos, M. 1995. Total Oxidation of Carbon Monoxide and Methane over Transition Metal-fluorite Oxide Composite Catalysts I. Catalyst Composition and Activity. J. Catal. 153: 304-316. CrossRef
  24. Luo, M. F., Zhong, Y. J., Yuan, X. X., and Zheng, X. M. 1997. TPR and TPD Studies of CuO/CeO2 Catalysts for Low Temperature CO Oxidation. Appl. Catal. A: Gen. 162: 121-131. CrossRef
  25. Zeng, S., Bai, X., Wang X., Yu W., and Liu, Y. 2006. Valence State of Active Copper in CuOx/CeO2 catalysts for CO oxidation. J. Rare Earths. 24 (2): 177-181 CrossRef
  26. Zheng, X., Zhang, X., Wang, S., Wang, X., and Wu, S. 2007. Effect of Addition of Base on Ceria and Reactivity of CuO/CeO2 Catalysts for Low-Temperature CO Oxidation. J. Natural Gas Chemistry 16: 179–185. CrossRef
  27. Zhang, S-M., Huang, W-P., Qiu, X-H., Li, B-Q., Zheng, X-C, and Wu, S-H. 2002. Comparative Study On Catalytic Properties of Low-Temperature CO Oxidation of Cu/CeO2 and CuO/CeO2 Prepared via Solvated Metal Atom Impregnation and Conventional Impregnation. Catal. Letters 80: 41-46. CrossRef
  28. Zhou, K., Xu, R., Sun, X., Chen, H., Tian, Q., Shen, D., and Lia, Y. 2005. Favorable Synergetic Effects Between CuO and the Reactive Planes of Ceria Nanorods. Catal. Letters 101: 169-173. CrossRef
  29. Sundar, R. S., and Deevi, S. 2006. CO Oxidation Activity of Cu–CeO2 Nano-Composite Catalysts Prepared by Laser Vaporization and Controlled Condensation. J. Nanoparticle Research 8: 497–509. CrossRef
  30. Kundakovic, L.K., and Stephanopoulos, M.F. 1998. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A: Gen. 171: 13-29. CrossRef
  31. Cao, J-L., Wang, Y., Zhang, T-Y., Wu, S-H., Yuan, Z-Y. 2008. Preparation Characterization and Catalytic behaviour of Nanostructured Mesoporous CuO/Ce0.8Zr0.2O2 Catalyst for Low Temperature CO Oxidation. Appl. Catal. B 78: 120-128. CrossRef
  32. Zou, Z-Q., Meng, M., Guo, Li-H., and Zha, Yu-Q. 2009. Synthesis and Characterization of CuO/Ce1−xTixO2 Catalysts used for Low- Temperature CO Oxidation. J. Hazardous Materials, 163: 835–842. CrossRef
  33. Wang, J.B., Tsai, D.H., and Huang, T.J. 2002. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria. J. Catal. 208: 370-380. CrossRef
  34. Bechara, R., Wrobel, G., Aissi, C.F., Guelton, M., Bonnelle, J.P., and Abou-Kais, A. 1990. Preparation and Characterization of Copper-Thorium Oxide Catalysts. 1. Solid Solution of Copper(I1) in Thoria: An ESR Study. Chem. Mater. 2: 518-552. CrossRef
  35. Marino, F., Descorme, C., and Duprez, D. 2005. Appl. Catal. B: Environ. Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Appl. Catal. B: Environ. 58(3-4): 175-183. CrossRef
  36. Sedmark, G., Hocevar, S., and Levec, J. 2004. Transient Kinetic Model of CO Oxidation Over a Nano-structured Cu0.1Ce0.9O2−y Catalyst. J. Catal. 222: 87-99. CrossRef
  37. Courtois, X., and Perrichon, V. 2005. Distinct Roles of Copper in Bimetallic Copper–Rhodium Three-Way Catalysts Deposited on Redox Supports. Appl. Catal. B: Environ. 57: 63–72. CrossRef
  38. Avgouropoulos, G, and Ioannides, T. 2003. Selective CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea–Nitrate Combustion Method. Appl. Catal.A: Gen. 244: 155–167. CrossRef
  39. Skårman, B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A., Reine Wallenberg, L.. 2002. Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. J. Catal. 211: 119-133. CrossRef
  40. Arias, A., Martý´nez, A. B., Hungrý´a, Fernan´dez-Garcý´a, M., Conesa, J. C., and Munuera, G. 2004. Interfacial Redox Processes under CO/O2 in a Nanoceria-Supported Copper Oxide Catalyst. J. Phys. Chem. B 108: 17983-17991. CrossRef
  41. Zheng, X., Wang, S., Wang, S., Zhang, S., Huang, W., and Wu, S. 2004. Copper Oxide Catalysts Supported on Ceria for Low-Temperature CO Oxidation. Catal. Commun. 5: 729–732. CrossRef
  42. Zheng, X., Zhang, X., Wang, X., Wang, S., and Wu, S. 2005. Preparation and Characterization of CuO/CeO2 Catalysts and their Application in Low-Temperature CO Oxidation. Appl. Catal. A: Gen. 295: 142-149. CrossRef
  43. Liu, W., Sarofim, A. F., and Stephanopoulos, M. F. 1994. Reduction of Sulfur Dioxide by Carbon Monoxide to Elemental Sulfur over Composite Oxide Catalysts. Appl. Catal. B. Environ. 4: 167-186. CrossRef
  44. Sedmark, G., and Hocevar, S. 2003. Kinetics of selective CO Oxidation in Excess of H2 Over the Nanostructured Cu0.1Ce0.9O2−y catalyst. J. Catal. 213: 135-150. CrossRef
  45. Qin, J., Junfeng Lu, Minhua Cao and Changwen Hu. 2010. Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2: 2739–2743. CrossRef
  46. Martı´nez-Arias, A., Ferna´ndez-Garcı´a, M., Hungrı´a, A. B., Iglesias-Juez, A., Ga´lvez, O., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. J. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. J. Catal. 214: 261-272. CrossRef
  47. Moretti, E., Lenarda, M., Storaro, L., Talon, A., Frattini, R., Polizzi, S., Rodrıguez-Castellon, E., and Jimenez-Lopez, A. 2007. Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. Appl. Catal .B: Environ. 72: 149-156. CrossRef
  48. Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., and Shen, W. 2005. CuO/CeO2 catalysts: Redox features and catalytic behaviours. Appl. Catal. A: Gen. 288: 116–125 . CrossRef
  49. Skarman B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A. and Wallenberg, L.R. 2002. Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and High-energy diffraction. J. Catal. 211: 119–133. CrossRef
  50. Trovarelli A., 1996. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38: 439–520. CrossRef
  51. Martınez-Arias, A., Fernandez-Garcia, M., Hungria, A.B., Iglesias-Juez, A., Galvez, O., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. J. Catal. 214: 261-272 CrossRef
  52. Trovarelli, A., Leitenburg, C. D., Boaro, M., Dolcetti, G. 1999. The utilization of ceria in industrial catalysis. Catal. Today 50: 353-367. CrossRef
  53. Hori, C.E., Permana, H., Ng, K.Y.S, Brenner, A., More, K., Rahmoeller, K.M., and Belton, D. 1998. Thermal stability of oxygen storage properties in a mixed CeO2–ZrO2 system. Appl. Catal. B: Environ. 16: 105–17. CrossRef
  54. Di Monte, R., and KaŠpar, J. 2005. Nanostructured CeO2-ZrO2 mixed oxides, J. Mater. Chem. 15: 633–648. CrossRef
  55. Balducci, G., P. Fornasiero, R. Di Monte, J. Kaspar, S. Meriani & M. Graziani, 1995. An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperature. Catal. Lett. 33: 193-200. CrossRef
  56. Michèle Pijolat, Marie Prin, Michel Soustelle, Olivier Touret and Patrice Nortier . 1995. Thermal stability of doped ceria: experiment and modelling. J. Chem. Soc. Faraday Trans. 91: 3941-3948. CrossRef
  57. Fornasiero, P., Balducci, G., Di Monte, R., Ka˘spar, J., Sergo, V., Gubitosa, G., Ferrero, A., and Graziani M.1996. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2. J. Catal. 164: 173–183.
  58. Reddy, B. M., Reddy, G. K., Reddy L. H. and Ganesh I. 2009. Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Microwave-Assisted Combustion Method. The Open Phy. Chem. J., 3: 24-29. CrossRef
  59. Chen, Y.-Z., Liaw, B.-J., Chang, W.-C., and Huang, C.-T. 2007. Selective oxidation of CO in excess hydrogen over CuO/CexZr1−xO2.Al2O3 catalysts. Intern. J. Hydrogen Energy 32: 4550 – 4558. CrossRef
  60. Xiao, L., Lin, P., Wang, W., Yang, Z., Fu, Y., and Yu, S. 2001. A novel preparation route of three-way catalysts. Topics in Catalysis. 16/17(1–4): 107-113. CrossRef
  61. Martı´nez-Arias, A., Fernan˜dez-Garcı´a, M., Ga´lvez, O., Coronado, J. M., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. 2000. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. J. Catal. 195: 207–216. CrossRef
  62. Aldridge, J.K.W. 2011. Heterogeneous CuMn2O4, Pt, Pd, and SnO2 catalysts for ambient temperature oxidation of carbon monoxide. Ph.D. Thesis, Cardiff University, United Kingdom
  63. Wang, S.-P., Zheng, X.-C., Wang, X.-Y., Wang, S.-R., Zhang, S.-M., Yu, L.-H., Huang, W.-P., and Wu, S.-H. 2005. Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts for low-temperature CO oxidation. Catal. Lett. 105(3–4): 163-168. CrossRef
  64. J.L. Ayastuy, A. Gurbani, M.P. González-Marcos, M.A. Gutiérrez-Ortiz. 2010. CO oxidation on CeXZr1−XO2-supported CuO catalysts: Correlation between activity and support composition. Appl. Catal. A: Gen. 387 119–128. CrossRef
  65. M. Shelef, G.W. Graham, R.W. McCabe, in: G.J. Trovarelli, Hutchings (Eds.), Catalysis by Ceria and Related Materials, Catalytic Science Series, vol. 2, Imperial College Press, London, 2002, pp. 343–376.
  66. Florian Huber, Hilde Venvik, Magnus Rønning, John Walmsley, Anders Holmen. 2008. Preparation and characterization of nanocrystalline, high-surface area Cu Ce Zr mixed oxide catalysts from homogeneous co-precipitation. Chem. Eng. J. 137: 686–702. CrossRef
  67. Prasad, R., and Rattan, G. 2010. Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bull. Chem. React. Eng. Catal. 5 (1): 7–30. CrossRef
  68. Rattan, G. 2011. Oxidation of Carbon Monoxide over Copper based Catalysts: A Vehicular Pollution Control Approach. Ph. D. Thesis, Panjab University, India.
  69. Qing Liang, Xiaodong Wu, Duan Weng, Zhenxiang Lu. 2008. Selective oxidation of soot over Cu doped ceria/ceria–zirconia catalysts. Catal. Commun. 9 (2008) 202–206. CrossRef
  70. Liu, Y., Fu, Q., and Stephanopoulos, M. F. 2004. Preferential Oxidation of CO in H2 over CuOCeO2 Catalysts. Catal. Today 93–95: 241-246. CrossRef
  71. Prasad, R., and Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal. 4(1): 5-9. CrossRef
  72. Hu, Y., Dong, L., Shen, M., Liu, D., Wang, J., Ding, W., and Chen, Y. 2001. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Appl. Catal. B 31: 61-69. CrossRef
  73. Damyanova, S., Perez, C., Schmal, M., and Bueno, J. 2002. Characterization of ceria-coated alumina carrier. Appl. Catal. A 234: 271-282 CrossRef