Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane

Ashutosh Mishra  -  Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
B.D. Tripathi  -  Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
A.K. Rai  -  Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
*Ram Prasad  -  Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
Received: 30 Oct 2012; Published: 9 Feb 2013.
Open Access
Citation Format:
Cover Image

The complete oxidation of n-Hexane and iso-Octane was studied individually in a fixed bed tubular flow reactor over CuO-CeO2 catalysts synthesized via four different methods namely urea-nitrate combustion method, urea gelation/co-precipitation method, citric acid sol-gel method and co-impregnation method. Laser diffraction was employed in catalysts characterization. The results obtained from the complete conversion of n-Hexane and iso-Octane revealed that the CuO-CeO2 catalysts prepared by urea-nitrate combustion method (UNC) showed the best performance than the catalysts prepared by other methods used in the present investigation. CuO-CeO2 catalysts prepared by UNC method achieve total n-Hexane and iso-Octane conversion to CO2 at lower temperatures of 280 0C and 340 0C respectively due to the larger surface area of the catalysts which increases the specific rate of reaction. © 2013 BCREC UNDIP. All rights reserved

Received: 30th October 2012; Revised: 30th November 2012; Accepted: 3rd December 2012

[How to Cite: A. Mishra, B.D. Tripathi, A.K. Rai, R. Prasad (2013). Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane. Bulletin of Chemical Reaction Engineering & Catalysis, 7(3): 172-178. (doi:10.9767/bcrec.7.3.4076.172-178)]

[Permalink/DOI: ]

cited by in scopus |

Keywords: n-Hexane; iso-Octane; Copper-ceria; Urea-nitrate combustion; Catalytic oxidation

Article Metrics:

  1. Molina, M.J. (1996). The role of chlorine in stratospheric chemistry. Pure Appl. Chem. 68: 1749-1756." target="_blank">CrossRef
  2. Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34: 2063-2101." target="_blank">CrossRef
  3. Horsley, J.A. (1993). Catalytica Environmental Report No. E4, Catalytica Studies Division, Mountain View, CA, USA
  4. Lauwerys, R. 3rd eds. (1992). Toxicologie Industrielle et Intoxications Professionnelles, Masson, Paris
  5. Everaert, K.;and Baeyens, J. (2004). Catalytic combustion of volatile organic compounds. J. Hazard. Mat. B 109: 113- 139." target="_blank">CrossRef
  6. Mastral, A.M.; Garcia, T.; Murillo, R.; Callen, M.S.; Lopez, J.M. (2002c). Three-ring PAH removal from waste hot gas by sorbents: Influence of the sorbent characteristics. Environ. Sci. Technol. 36: 1821-1826." target="_blank">CrossRef
  7. Legube, B.; Guyon, S.; Sugimitsu, H.; Dore, M. (1986). Ozonation du naphtalene en milieu aqueux—I. Consommation d'ozone et produits de reaction. Water Res. 20:197–208." target="_blank">CrossRef
  8. US EPA, Air Pollution Control Technology Fact Sheet, EPA-452/F-03-022
  9. Chen, G.; Strevett, K.A.; Vanega, B.A. (2001). Naphthalene, phenanthrene and surfactant biodegradation. Biodegradation. 12: 433–442." target="_blank">CrossRef
  10. Todorova, S.; Kolev, H.; Holgado, J.P.; Kadinov, G.; Bonev, C.; Peren˜ ı´guez, R.; Caballero, A. (2010). Complete n-hexane oxidation over supported Mn–Co catalysts. Applied Catalysis B: Environmental. 94: 46–54." target="_blank">CrossRef
  11. Tian, Z.; Bahlawane, N.; Qi, F.; Kohse-Höinghaus, K. (2009). Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CV3D. Catalysis Communications. 11:118–122." target="_blank">CrossRef
  12. Delimaris, D.; and Ioannides, T. (2009). VOC Oxidation over CuO–CeO2 Catalysts Prepared by a Combustion Method. Appl. Catal. B: Env. 89: 295–302." target="_blank">CrossRef
  13. Spinicci, R.; Tofanari, A.; Faticanti, M.; Pettiti, I.; and Porta, P. (2001). Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides. J. Mol. Catal. A: Chem.176 : 247–252." target="_blank">CrossRef
  14. Kim, S. C. (2002). The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J. Hazard. Mat. B91: 285-299." target="_blank">CrossRef
  15. Tidahy, H.L.;Siffert, S.; Lamonier, J.-F.; Cousin, R.; Zhilinskaya, E.A.; Aboukaı¨s, A.; Su, B.-L.; Canet, X.; Weireld, G.D.; Fre`re, M.; Giraudon, J.-M.; Leclercq, G. (2007). Appl. Catal. B: Environ. 70: 377–383." target="_blank">CrossRef
  16. Avgouropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. (2006). Appl. Catal. B: Environ. 65: 62–69." target="_blank">CrossRef
  17. De´ge´, P.; Pinard, L.; Magnoux, P.; Guisnet, M. (2001). Surf. Chem. Catal. 4: 41–47." target="_blank">CrossRef
  18. Tsou, J.; Magnoux, P.; Guisnet, M.; Orfao, J.J.M.; Figueiredo, J.L. (2005). Catalytic oxidation of volatile organic compounds: oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl. Catal. B: Environ. 57: 117–123." target="_blank">CrossRef
  19. Grbic, B.; Radic, N.; Ana, T.B. (2004). Appl. Catal. B: Environ. 50: 161–166." target="_blank">CrossRef
  20. Wang, C.H.; Lin, S.S.; Chen, C.L.; Weng, H.S. (2006). Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere 64: 503–509." target="_blank">CrossRef
  21. Cordi, E.M.; O’Neill, P.J.; Falconer, J.L. (1997). Oxidation of volatile organic compounds on CuO/Al2O3 catalysts. Appl. Catal. B: Environ. 14: 23–36." target="_blank">CrossRef
  22. Morales, M.R.; Barbero, B.P.; Cadu´s, L.E. (2007). Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl. Catal. B: Environ. 74: 1–10." target="_blank">CrossRef
  23. Sinha, A.K.; Suzuki, K. (2007). Novel mesoporous chromium oxide for VOCs elimination. Appl. Catal. B: Environ. 70: 417–422." target="_blank">CrossRef
  24. Sedmark, G.; Hocevar, S.; and Levec, J. (2004).Transient Kinetic Model of CO Oxidation Over a Nanostructured Cu0.1Ce0.9O2−y Catalyst. J. Catal. 222: 87-99." target="_blank">CrossRef
  25. Aguila, G.; Gracia, F.; and Araya, P. (2008). CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A: Gen. 343: 16–24." target="_blank">CrossRef
  26. Avgouropoulos, G,; and Ioannides, T. (2003). Selective CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea–Nitrate Combustion Method. Applied Catalysis A: General 244: 155–167." target="_blank">CrossRef
  27. Liu, Y.; Fu, Q.; and Stephanopoulos, M. F. (2004). Preferential Oxidation of CO in H2 over CuOCeO2 Catalysts. Catal. Today 93–95: 241-246." target="_blank">CrossRef
  28. Marin˜ o, F.; Descormr, C.; and Duprez, D. (2005). Supported base Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Excess Hydrogen (PROX). Appl. Catal. B 58: 175." target="_blank">CrossRef
  29. Marban, G.; and Fuertes, A.B. (2005). Highly Active and Selective CuOx/CeO2 Catalyst Prepared by A Single-Step Citrate Method for Preferential Oxidation of Carbon Monoxide. Appl. Catal. B 57: 43-53." target="_blank">CrossRef
  30. Park, J.; Jeong, J.; Yoon, W.; Jung, H.; Lee, H.; Lee, D.; Park, Y.; and Rhee, Y. (2004). Activity and Characterization of the Co-Promoted CuO– CeO2/γ-Al2O3 Catalyst for the Selective Oxidation of CO in excess Hydrogen. Appl. Catal. A. 274: 25-32." target="_blank">CrossRef
  31. Cheektamarla, P.; Epling, W.; and Lane, A. (2005). Selective Low-Temperature Removal of Carbon Monoxide from Hydrogen-Rich Fuels over Cu–Ce–Al Catalysts. J. Power Sources. 147: 178-183." target="_blank">CrossRef
  32. Ratnasamy, P.; Srinivas, D.;. Satyanarayana, C.V.V; Manikandan, P.; Kumaran, R S. S.; Sachin, M.; and Shetti, V. N. (2004). Influence of the Support on the Preferential Oxidation of CO in Hydrogen-Rich Steam Reformates over the CuO–CeO2–ZrO2 System. Journal of Catalysis 221: 455–465." target="_blank">CrossRef
  33. Park, J. W.; Jeong, J. H.; Yoon, W. L.; Kim, C. S.; Lee, D. K.; Park, Y. K.; Rhee, Y. W. (2005). Selective Oxidation of CO in Hydrogen-Rich Stream Over Cu–Ce Catalyst Promoted with Transition Metals. Int. J. Hydr. Energy 30: 209-220." target="_blank">CrossRef
  34. Shiau, C.; Ma, M.; and Chuang, C. (2006). CO Oxidation over CeO2-Promoted Cu/γ-Al2O3 Catalyst: Effect of Preparation Method. Appl. Catal. A 301: 89-95." target="_blank">CrossRef
  35. Manzoli, M.; Di Monte, R.; Boccuzzi, F.; and Coluccia. S. (2005). CO oxidation over CuOx-CeO2-ZrO2 Catalysts: Transient behaviour and Role of Copper Clusters in Contact with Ceria. Appl. Catal. B 61: 192-205." target="_blank">CrossRef
  36. Hu, Y.; Dong, L.; Wang, J.; Ding, W.; and Chen, Y. (2000). Activities of supported copper oxide Catalysts in the NO+CO Reaction at Low Temperatures. Journal of Molecular Catalysis A. Chemical 162: 307–316." target="_blank">CrossRef
  37. Schwarz, J. A.; Contescu C.; and Contescu, A. (1995). Methods for Preparation of Catalytic Materials. Chem. Rev. 95: 477-510." target="_blank">CrossRef
  38. Prasad, R.; and Rattan, G. (2010). Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bull. Chem. React. Eng. Catal. 5: 7-30" target="_blank">CrossRef
  39. Li, Y.; Fu, Q.; Flytzani-Stephanopoulos, M. (2000). Appl. Catal. B. 27: 179-191." target="_blank">CrossRef
  40. Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; Flytzani-Stephanopoulos, M. (2003). Chem. Eng. J. 93: 41-53." target="_blank">CrossRef
  41. Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. (2001). Catal. Lett. 77: 87-95." target="_blank">CrossRef
  42. Liang, Q.; Wu, X.; Weng, D.; and Lu, Z. (2008). Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. Catal. Commun. 9: 202-206." target="_blank">CrossRef
  43. He, H.; Vohs, J. M.; and Gorte, R. J. (2003). Effect of Synthesis Conditions on the Performance of Cu- CeO2-YSZ Anodes in SOFCs, J. Electrochem. Soc. 150: A1470–A1475." target="_blank">CrossRef
  44. Aguila, G.; Gracia, F.; and Araya, P. (2008). CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A: Gen 343: 16–24." target="_blank">CrossRef
  45. Prasad, R.; and Rattan, G. (2009). Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal. 4: 5-9." target="_blank">CrossRef" target="_blank"><a href=" border="0">
  46. Sinha, A.S.K.; and Shankar, V. (1993). Low-Temperature Catalysts for Total Oxidation of n-Hexane. Ind. Eng. Chem. Res. 32: 1061-1065." target="_blank">CrossRef
  47. Pengpanich, S.; Meeyoo, V.; Rirksomboon, T.; Schwank, J. (2008). Iso-Octane partial oxidation over Ni-Sn/ Ce0.75Zr0.25O2 catalysts. Cat. Today 136: 214-221." target="_blank">CrossRef
  48. Moon, D.J.; Ryu, J.W.; Lee, S.D.; Lee, B.G.; Ahn, B.S. (2004). Ni-based catalysts for partial oxidation reforming of iso-octane. Appl. Catal. A: Gen. 272: 53-60." target="_blank">CrossRef
  49. Ciajolo, A.; and D’Anna, A. (1998). Controlling steps in the low-temperature oxidation of n-heptane and iso-octane. Comb. & Flam. 112: 617-622." target="_blank">CrossRef
  50. Ibrahim, H.H.; and Idem, R.O. (2008). Single and mixed oxide-supported nickel catalysts for the catalytic partial oxidation reforming of gasoline. Energy Fuels 22: 878-891." target="_blank">CrossRef

Last update: 2021-05-07 03:28:53

No citation recorded.

Last update: 2021-05-07 03:28:53

No citation recorded.