Eco friendly nitration of toluene using modified zirconia

*K.R. Sunaja Devi  -  Department of Chemistry, Christ University, Bangalore-560029,, India
S. Jayashree  -  Department of Chemistry, Christ University, Bangalore-560029,, India
Received: 20 Nov 2012; Published: 23 Feb 2013.
Open Access
Citation Format:
Cover Image
Abstract

Nitration of toluene has been studied in the liquid phase over a series of modified zirconia catalysts.  Zirconia, zirconia- ceria (Zr0.98Ce0.02)O2, sulfated zirconia and sulfated zirconia- ceria were synthesised by co precipitation method and were characterised by X-ray diffraction, BET surface area, Infra red spectroscopy analysis (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X ray analysis (EDAX). The acidity of the prepared catalysts was determined by FTIR pyridine adsorption study. X-ray diffraction studies reveal that the catalysts prepared mainly consist of tetragonal phase with the crystallite size in the nano range and the tetragonal phase of zirconia is stabilized by the addition of ceria. The modified zirconia samples have higher surface area and exhibits uniform pore size distribution aggregated by zirconia nanoparticles. The onset of sulfate decomposition was observed around 723 K for sulfated samples. The catalytic performance was determined for the liquid phase nitration of toluene to ortho-, meta- and para- nitro toluene. The effect of reaction temperature, concentration of nitric acid, catalyst reusability and reaction time was also investigated. © 2013 BCREC UNDIP. All rights reserved

Received: 20th November 2012; Revised: 8th December 2012; Accepted: 7th January 2013

[How to Cite: K. R. S. Devi, S. Jayashree, (2013). Eco friendly nitration of toluene using modified zirconia. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3): 205-214. (doi:10.9767/bcrec.7.3.4154.205-214)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4154.205-214 ]

View in  |

Keywords: Nitration of toluene; zirconia; zirconia-ceria; sulfated zirconia; sulfated zirconia-ceria.

Article Metrics:

  1. Olah, G.A., Malhotra, R., Narang, S.C. (1989). Nitration: Method and Mechanisms: VCH publisher Inc-New York 1989: 5-15
  2. Winnacker, K., Kuchler, L., Harnisch, H., Steiner R., Winnacker, K. (Eds.), Chemische Technologie (Band 6): Organische Technologie II, 4th Edition, Carl Hanser Verlag, Munchen, (1982), pp. 169
  3. Glusshko, V.P., (Ed.), Thermodynamic Properties of Individual Substances, Nauka, Moscow, (1978). Vol. 1
  4. Kalbasi R.J., Ghiaci, M., Massah, A.R. (2009). Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Applied Catalysis A: General, 353: 1–8. http://dx.doi.org/10.1016/j.apcata.2008.10.013" target="_blank">CrossRef
  5. Dagade, S.P.,Waghmode, S.B., Kadam, V.S., Dongare, M.K. (2002). Vapor phase nitration of toluene using dilute nitric acid and molecular modeling studies over beta zeolite. Applied Catalysis A: General, 226: 49-61. http://dx.doi.org/10.1016/S0926-860X(01)00882-1" target="_blank">CrossRef
  6. Dagade, S.P., Kadam, V.S., Dongare, M.K. (2002). Regioselective nitration of phenol over solid acid catalysts. Catalysis Communications, 3: 67-70. http://dx.doi.org/10.1016/S1566-7367(02)00048-1" target="_blank">CrossRef
  7. Patil, P.T., Malshe, K.M., Dagade, S.P., Dongare, M.K. (2003). Regioselective nitration of o-xylene to 4-nitro-o-xylene using nitric acid over solid acid catalysts. Catalysis Communications, 4: 429-434. http://dx.doi.org/10.1016/S1566-7367(03)00097-9" target="_blank">CrossRef
  8. Parida, K.M., Pattnayak, P.K. (1997). Sulphated zirconia: An efficient paraselective catalyst for mononitration of halobenzenes. Catalysis Letters, 47: 255 – 257. http://dx.doi.org/10.1023/A:1019073525356" target="_blank">CrossRef
  9. Yadav, G.D., Nair, J.J. (1999). Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Material, 33: 1-48. http://dx.doi.org/10.1016/S1387-1811(99)00147-X" target="_blank">CrossRef
  10. Brei, V.V., Prudius, S.V., Melezhyk, O.V. (2003). Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts. Applied Catalysis A: General, 239(1–2): 11–16. http://dx.doi.org/10.1016/S0926-860X(02)00383-6" target="_blank">CrossRef
  11. Sunajadevi, K.R., Sugunan, S. (2005). Sulfated titania mediated regioselective nitration of phenol in solid state. Catalysis Communications, 6(9): 611-616. http://dx.doi.org/10.1016/j.catcom.2005.05.013" target="_blank">CrossRef
  12. Mao, W., Ma, H., Wang, B. (2009). A clean method for the solvent- free nitration of toluene over sulfated titania promoted by ceria catalysts. Journal of Hazardous Materials, 167: 707-712. http://dx.doi.org/10.1016/j.jhazmat.2009.01.045" target="_blank">CrossRef
  13. Wright, O.L., Teipel. J., Thoennes, D. (1965). The Nitration of Toluene by Means of Nitric Acid and an Ion-Exchange Resin. Journal of Organic Chemistry, 30: 1301-1303. http://dx.doi.org/10.1021/jo01015a541" target="_blank">CrossRef
  14. Shi, M., Cui, S.C. (2002). Perfluorinated rare earth metals catalyzed nitration of aromatic compounds Journal of Fluorine Chemistry, 113: 207-209. http://dx.doi.org/10.1016/S0022-1139(01)00551-6" target="_blank">CrossRef
  15. Shi, M., Cui, S.C. (2002). Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chemical Communications, 7(9): 994-995. http://dx.doi.org/10.1039/B202308N" target="_blank">CrossRef
  16. Shi, M., Cui, S.C. (2003). Electrophilic Aromatic Nitration Using a Mixed Catalyst of Lithium, Molybdenum, Ytterbium on Silica Gel. Advanced Synthesis & Catalysis, 345: 1329 – 1333. http://dx.doi.org/10.1002/adsc.200303129" target="_blank">CrossRef
  17. Heravi, M.M., Bakhtiari, K., Benmorad, T., Bamoharram, F.F., Oskooie, H.A., Tehrani, M.H. (2006). H3PMo12VO40(heteropolyacids)- catalyzed regioselective nitration of phenol to o-nitrophenol in heterogeneous system. Journal of Molecular Catalysis A: Chemistry 264: 318-321 http://dx.doi.org/10.1016/j.molcata.2006.09.014" target="_blank">CrossRef
  18. Zhao, X.Q., Han, Y.T., Sun, X.L.,Wang, Y.J. (2007). Structure and Catalytic Performance of H3PW12O40/SiO2 Prepared by Several Methods. Chinese Journal of Catalysis, 28: 91-95. http://dx.doi.org/10.1016/S1872-2067(07)60011-4" target="_blank">CrossRef
  19. Choudary, B.M., Sateesh, M., Kantam, M.L., Rao, K,K., Ram, K.V. (2000). Selective nitration of aromatic compounds by solid acid catalysts. Chemical Communications, 1: 25-26. http://dx.doi.org/10.1039/A908011B" target="_blank">CrossRef
  20. Akolekar, D.B., Lemay, G., Sayari, A., Kaliaguine, S. (1995). High-pressure nitration of toluene using nitrogen dioxide on zeolite catalysts. Research on Chemical Intermediates, 21: 7-16. http://dx.doi.org/10.1163/156856795X00026" target="_blank">CrossRef
  21. Sakthivel, R., Prescott, H.A., Deutsch, J., Lieske, H., Kemnitz, E. (2003). Synthesis, characterization, and catalytic activity of SO4/Zr 1−xSnxO2. Applied Catalysis A: General, 20: 237-247. http://dx.doi.org/10.1016/S0926-860X(03)00523-4" target="_blank">CrossRef
  22. Escribano, V.S. (2003). Characterization of cubic ceria–zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sciences, 5: 1369–1376. http://dx.doi.org/10.1016/j.solidstatesciences.2003.07.001" target="_blank">CrossRef
  23. Yamaguchi, T. (1994). Application of ZrO2 as a catalyst and a catalyst support Catalysis Today 20: 199-217. http://dx.doi.org/10.1016/0920-5861(94)80003-0" target="_blank">CrossRef
  24. Brei, V.V. (2005). Superacids Based on Zirconium Dioxide. Theoretical and Experimental Chemistry, 3(42): 165-175. http://dx.doi.org/10.1007/s11237-005-0035-7" target="_blank">CrossRef
  25. Yu, S., Jiang, P., Dong, Y., Zhang, P., Zhang, Y., Zhang, W. (2012). Hydrothermal Synthesis of Nanosized Sulfated Zirconia as an Efficient and Reusable Catalyst for Esterification of Acetic Acid with n-Butanol. Bulletin of Korean Chemical Society, 2(33): 524-528. https://vpn2.utm.my/main/j_search/,DanaInfo=journal.kcsnet.or.kr+j_download.htm?code=B120231" target="_blank">View at Publisher
  26. Reddy, B.M., Sreekanth, P.M., Lakshmanan, P. (2005). Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reaction. Journal of Molecular Catalysis A: Chemical, 237: 93-100. http://dx.doi.org/10.1016/j.molcata.2005.04.039" target="_blank">CrossRef
  27. Scherrer, P. (1918). Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Ges. Wiss. Göttingen, 26: 98-100
  28. Saravanan, K., Beena Tyagi, Bajaj, H.C. (2012). Synthesis of dypnone by solvent free self condensation of acetophenone over nano-crystalline sulfated zirconia catalyst. Journal of solgel Science and Technology, 61: 275–280. http://dx.doi.org/10.1007/s10971-011-2624-3" target="_blank">CrossRef
  29. Angel, J. D., Aguilera, A. F., Galindo1, I. R., Martínez, M., Viveros , T. (2012). Synthesis and Characterization of Alumina-Zirconia Powders Obtained by Sol-Gel Method: Effect of Solvent and Water Addition Rate. Materials Sciences and Applications, 3: 650-657 http://dx.doi.org/10.4236/msa.2012.39095" target="_blank">CrossRef
  30. Powers, A., Gray, H.B. (1973). Characterization of the thermal dehydration of zirconium oxide halide octahydrates. Inorganic Chemistry, 12: 2721-2726. http://dx.doi.org/10.1021/ic50129a045" target="_blank">CrossRef
  31. Ranjan Sahu, H., Ranga Rao, G. (2000). Characterization of combustion synthesized zirconia powder by UV-vis, IR and other techniques. Bulletin of Material Sciences, 23: 349–354. http://dx.doi.org/10.1007/BF02708383" target="_blank">CrossRef
  32. Hao, Y., Li, J., Yang, X., Wang, X., Lu, L. (2004). Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization. Material Science Engineering A, 367: 243–247. http://dx.doi.org/10.1016/j.msea.2003.10.321" target="_blank">CrossRef
  33. Fielicke, A. Von Helden, G., Meijer, G.,Pedersen, D.B., Simard, B., Rayner, D.M. (2005). Gold Cluster Carbonyls: Saturated Adsorption of CO on Gold Cluster Cations, Vibrational Spectroscopy, and Implications for Their Structures. Journal of American Chemical Society, 127: 8416–8423. http://dx.doi.org/10.1021/ja0509230" target="_blank">CrossRef
  34. Saur, O., Bensitel, M., Saad, A.B.M., Lavalley, J.C., Tripp, C.R., Morrow, B.A. (1986). The structure and stability of sulfated alumina and titania. Journal of Catalysis, 99: 104–110. http://dx.doi.org/10.1016/0021-9517(86)90203-4" target="_blank">CrossRef
  35. Morterra, C., Bolis, V., Cerrato, G. (1993). Lewis and Brønsted acidity at the surface of sulfate-doped ZrO2 catalysts. Catalysis Today, 17: 505–515. http://dx.doi.org/10.1016/0920-5861(93)80053-4" target="_blank">CrossRef
  36. Morterra, C., Cerrato, G., Pinna, F., Signoretto, M. (1994). Bronsted Acidity of a Superacid Sulfate-Doped ZrO2 System. Journal of Physical Chemistry, 47(98): 12373–12381. http://dx.doi.org/10.1021/j100098a036" target="_blank">CrossRef
  37. Clearfield, A., Serrete, G.P.D., Khazi-Syed, A.H. (1994). Nature of hydrous zirconia and sulfated hydrous zirconia. Catalysis Today, 20: 295–312. http://dx.doi.org/10.1016/0920-5861(94)80008-1" target="_blank">CrossRef
  38. Kustov, L.M., Kazansky, V.B., Figueras, F., Tichit, D. (1994). Investigation of the Acidic Properties of ZrO2 Modified by SO42− Anions. Journal of Catalysis, 150: 143–149. http://dx.doi.org/10.1006/jcat.1994.1330" target="_blank">CrossRef
  39. Sun, Y., Ma, S., Du, Y., Yuan, L., Wang, S. Yang, J., Deng, F., Xiao, F.S. (2005). Solvent-Free Preparation of Nanosized Sulfated Zirconia with Brønsted Acidic Sites from a Simple Calcination. Journal of Physical Chemistry B, 109: 2567-2572. http://dx.doi.org/10.1021/jp046335a" target="_blank">CrossRef
  40. Li, N., Wang, A.Q., Zheng, M.Y.,Wang, X.D.,Cheng, R.H., Zhang, T. (2004). Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane. Journal of Catalysis, 225: 307–315. http://dx.doi.org/10.1016/j.jcat.2004.04.026" target="_blank">CrossRef
  41. Sato, H.; Nagai, K.; Yoshioka, H.; Nagaoka, Y. (1998). Vapor phase nitration of benzene over solid acid catalysts: III. Nitration with nitric acid (2); mixed metal oxide treated with sulfuric acid and heteropolyacid partially neutralized. Applied Catalysis A: General, 175: 209–213. http://dx.doi.org/10.1016/S0926-860X(98)00217-8" target="_blank">CrossRef
  42. Kogelbauer, A., Vassena, D., Prins, R., Armor, J.N. (2000). Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene. Catalysis Today, 55: 151–160. http://dx.doi.org/10.1016/S0920-5861(99)00234-5" target="_blank">CrossRef
  43. Kemdeo, S.M., Sapkal, V.S., Chaudhari, G.N. (2010). Mixed Oxide Supported MoO3 Catalyst: Preparation, Characterization and Activities in Nitration of o-xylene. Bulletin of Chemical Reaction Engineering & Catalysis, 5(1): 39-49. http://dx.doi.org/10.9767/bcrec.5.1.776.39-49" target="_blank">CrossRef

Last update: 2021-04-22 11:33:05

No citation recorded.

Last update: 2021-04-22 11:33:05

  1. Cordierite honeycomb monoliths coated with modified forms of ceria for the acid catalyzed synthesis of butylacetate via microwave irradiation

    Venkatesh . Indian Journal of Chemical Technology, 27 (2), 2020.
  2. Kinetic studies on Liquid phase transesterification-of dimethyl malonate with benzyl alcohol over modified ceria as efficient Solid acid catalysts

    Venkatesh . Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 57 (11), 2018.
  3. Kinetics of solid acid catalyzed toluene nitration using the incremental identification method

    Gayatri D.. Reaction Kinetics, Mechanisms and Catalysis, 114 (1), 2015. doi: 10.1007/s11144-014-0784-1
  4. Sulfated Copper Oxide Catalyzed One-Pot Synthesis of N-Fused Benzimidazolo/Benzothiazolo Pyrimidines

    Jayashree S.. Polycyclic Aromatic Compounds, 2019. doi: 10.1080/10406638.2019.1625065
  5. Preparation of sulfated zirconia catalyst loaded by copper in 'nano-scale: Green application' to synthesis of biolubricant

    Ibrahim A.H.. Egyptian Journal of Chemistry, 61 (3), 2018. doi: 10.21608/EJCHEM.2018.3044.1267
  6. Characterization of modified α-LiNbWO6 layered materials and their catalytic performance for toluene nitration

    Wang Y.. Optoelectronics and Advanced Materials, Rapid Communications, 10 (1), 2016.
  7. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles

    Nasseri M.. Journal of Nanoparticle Research, 21 (10), 2019. doi: 10.1007/s11051-019-4643-x
  8. Citrate complexation microwave-assisted synthesis of Ce0.8Zr0.2O2 nanocatalyst over Al2O3 used in CO oxidation for hydrogen purification: Influence of composite loading and synthesis method

    Rezaee L.. RSC Advances, 6 (40), 2016. doi: 10.1039/c6ra02973f