Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

DOI: https://doi.org/10.9767/bcrec.8.1.4394.14-33
Classification of Acid-Base Heterogeneous Catalysts in Fragrance Synthesis

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 23-01-2013
Published: 19-06-2013
Section: Review Articles
Fulltext PDF Tell your colleagues Email the author
This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reserved

Received: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013

[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013). Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1): 14-33. (doi:10.9767/bcrec.8.1.4394.14-33)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33]

| View in  |

Keywords

Acid heterogeneous catalysts; base heterogeneous catalysts; fragrances synthesis

  1. Hartati Hartati 
    Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Laboratory of Material Chemistry and Energy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Laboratory of Natural Products and Chemical Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,, Indonesia
  2. Mardi Santoso 
    Laboratory of Natural Products and Chemical Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,, Indonesia
  3. Sugeng Triwahyono 
    Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia, Johor Bahru, 81310,, Malaysia
  4. Didik Prasetyoko 
    Laboratory of Material Chemistry and Energy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Laboratory of Energy, Center for Energy Studies, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,, Indonesia
  1. Hagen, J. (2006). Industrial Catalysis, Second Edition. Wiley-VCH Verlag GmbH & Co. KgaA:Weinheim, Germany.
  2. Fritter, G., Bajgrowicz, J. A., and Kraft, P. (1998). Fragrance Chemistry. Tetrahedron, 54:7633-7703.
  3. International Trade Center (ITC). (2011). Essential Oils and Oleoresins. Market News Service (MNS), MNS/ITC, Quarterly Edition.
  4. Guzik, A. F. and Nowak, I. (2009). Mesoporous niobosilicates serving as catalysts for synthesis of fragrances. Catalysis Today, 142:288–292.
  5. Hensen, K., Mahaim, C., Hӧlderich, W. F. (1997). Alkoxylation of limonene and alpha-pinene over beta zeolite as heterogeneous catalyst. Applied Catalysis A: General , 149:311-329.
  6. Murphy, E. F., Mallat, T., Baiker, A. (2000). Allylic oxofunctionalization of cyclic olefins with homogeneous and heterogeneous catalysts. Catalysis Today, 57:115–126.
  7. Climent, M.J., Corma, A., and Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chem. Rev., 111:1072–1133.
  8. Freese, U., Heinrich, F., Roessner, F. (1999). Acylation of aromatic compounds on H-Beta zeolites, Catalysis Today, 49:237-244.
  9. Sheldon, R. A. and Downing, R. S. (1999). Heterogeneous catalytic transformations for environmentally friendly production. Applied Catalysis A: General, 189:163–183.
  10. Helwani, Z., Othman, M. R., Aziz, N., Kim, J., Fernando, W. J. N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363:1–10.
  11. Bao, Q, Qiao, K., Tomida, D., Yokoyama, C. (2009). Acetalization of carbonyl compounds catalyzed by GaCl3 immobilized on imidazolium-styrene copolymers. Catalysis Communications, 10:1625–1628.
  12. Kozhevnikov, I. V. (2009). Heterogeneous acid catalysis by heteropoly acids: Approaches to catalyst deactivation. Journal of Molecular Catalysis A: Chemical, 305:104–111.
  13. Leng, Y., Wang, J., Zhu, D., Wu, Y., Zhao, P. (2009). Sulfonated organic heteropolyacid salts: Recyclable green solid catalyst for esterifications. Journal of Molecular Catalysis. A Chemical, 313(1-2):1-6.
  14. de Meirelesa, A. L. P., da Silva Rocha, K. A., Kozhevnikov, I. V., Gusevskaya, E. V. (2011). Esterification of camphene over heterogeneous heteropoly acid catalysts: Synthesis of isobornyl carboxylates. Applied Catalysis A: General, 409– 410:82– 86.
  15. da Silva Rocha, K. A., Rodrigues, N. V. S., Kozhevnikov, I. V., Gusevskaya, E. V. 2010, Heteropoly acid catalysts in the valorization of the essential oils: Acetoxylation of b-caryophyllene, Applied Catalysis A: General, 374, 87–94.
  16. da Silva Rocha, K. A., Robles-Dutenhefner, P. P., Kozhevnikov, I. V., Gusevskaya, E. V. (2009). Phosphotungstic heteropoly acid as efficient heterogeneous catalyst for solvent-free isomerization of a-pinene and longifolene. Applied Catalysis A: General, 352:188–192.
  17. Justus, J., Vinu, A., Devassy, B. M., Balasubramanian, V. V., Bohringer, W., Fletcher, J., Halligudi, S. B. (2008). Highly efficient and chemo selective catalyst system for the synthesis of blossom orange fragrance and flavoring compounds. Catalysis Communications, 9:1671–1675.
  18. Atalay, B. and Gunduz, G.. (2011). Isomerizaton of a-pinene over H3PW12O40 catalysts supported on natural zeolite. Chemical Engineering Journal, 168:1311–1318.
  19. Dijs, I. J., van Ochten, H. L. F. van Walree, C. A. , Geus, J. W., Jenneskens, L. W. (2002). Alkyl sulphonic acid surface-functionalised silica as heterogeneous acid catalyst in the solvent-free liquid-phase addition of acetic acid to camphene. Journal of Molecular Catalysis A: Chemical, 188:209–224.
  20. Umbarkar, S. B., Kotbagi, T. V., Biradar, A. V., Pasrich, R., Chanale, J., Dongare, M. K., Mamede, A. S., Lancelot, C., Payen, E. (2009). Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. Journal of Molecular Catalysis A: Chemical, 310:150–158.
  21. Niwa, M., Katada, N., Okumura, K. (2010). Characterization and Design of Zeolite Catalysts, Solid Activity, Shape Selectivity and Loading Properties, Sringer-Verlag Berlin Heidelberg.
  22. Climent, M. J., Corma, A., Iborra, S., Epping, K., and Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225:316–326.
  23. Climent, M. J., Corma, A., Velty, A. , and Susarte, M. (2000). Zeolites for the Production of Fine Chemicals: Synthesis of the Fructone Fragrancy. Journal of Catalysis, 196:345–351.
  24. Candu, N., Florea, M., Coman, S. M., Parvulescu, V. I. (2011). Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 393:206–21.
  25. Kantam, M. L., Choudary, B. M., Kumar, N. S., Ramprasad, K. V. (2005). Beta zeolite: an efficient and eco-friendly catalyst for the nitration of o-xylene with high regio-selectivity in liquid phase. Journal of Molecular Catalysis A: Chemical, 229:67–70.
  26. Yongzhong, Z., Yuntong, N., Jaenicke, S., Chuah, G. K. (2005). Cyclisation of citronellal over zirconium zeolite beta-a highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis, 229:404–413.
  27. Climent, M. J., Corma, A., Velty, A. (2004). Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 263:155–161.
  28. Thomas, B., Prathapan,S., Sugunan, S. (2005). Synthesis of dimethyl acetal of ketones: design of solid acid catalysts for one-pot acetalization reaction. Microporous and Mesoporous Materials, 80:65–72.
  29. Padró, C. L., Rey, E. A., Peña, L. F. G, Apesteguía, C. R. (2011). Activity, selectivity and stability of Zn-exchanged NaY and ZSM5 zeolites for the synthesis of o-hydroxyacetophenone by phenol acylation. Microporous and Mesoporous Materials, 143:236–242.
  30. Singh, A. P. and Pandey, A. K. (1997). Acetylation of benzene to acetophenone over zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 123:141-l 47
  31. Osterholm, H., Kumar, N., Lindblad, M, Tiitta, M., Salmi,T., Murzin, D. (2011). Characterization of MFI and BEA embedded in mesoporous molecular sieve – Thermal stability. Microporous and Mesoporous Materials, xxx:xxx–xxx.
  32. Wang, J., Hua, W., Yue, Y., Gao, Z. (2010). MSU-S mesoporous materials: An efficient catalyst for isomerization of a-pinene. Bioresource Technology, 101:7224–7230.
  33. Lal, J., Sharma, M., Gupta, S., Parashar, P., Sahu, P., Agarwal, D. D. (2012). Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions. Journal of Molecular Catalysis A: Chemical, 352:31– 37.
  34. Misra, C. And Perrotta, J. (1992). Composition and Properties of Synthetic Hydrotalcites, Clays and Clay Minerals, 40(2):145-150.
  35. Padmasri, A. H., Venugopal, A., Kumari, V. D., Rao, K. S. R., Rao P. K. (2002). Calcined Mg–Al, Mg–Cr and Zn–Al hydrotalcite catalysts for tert-butylation of phenol with iso-butanol: a comparative study. Journal of Molecular Catalysis A: Chemical, 188:255–265.
  36. Srivastava, V. K., Bajaj, H. C., Jasra, R. V. (2003). Solid base catalysts for isomerization of 1-methoxy-4- (2-propen-1-yl)benzene to 1-methoxy-4- (1-propen-1-yl)benzene. Catalysis Communications, 4:543–548.
  37. Sharma, S. K., Parikh, P. A., Jasra, R. V. (2007). Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. Journal of Molecular Catalysis A: Chemical, 278:135–144.
  38. Patel, H. A., Sharma, S. K., Jasra, R. V. (2008). Synthetic talc as a solid base catalyst for condensation of aldehydes and ketones. Journal of Molecular Catalysis A: Chemical, 286:31–40.