Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

Hartati Hartati  -  Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, , Indonesia
Mardi Santoso  -  Laboratory of Natural Products and Chemical Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,, Indonesia
Sugeng Triwahyono  -  Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia, Johor Bahru, 81310,, Malaysia
*Didik Prasetyoko  -  Laboratory of Material Chemistry and Energy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,, Indonesia
Received: 23 Jan 2013; Published: 19 Jun 2013.
Open Access
Citation Format:
Classification of Acid-Base Heterogeneous Catalysts in Fragrance Synthesis
This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reserved

Received: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013

[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013). Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1): 14-33. (doi:10.9767/bcrec.8.1.4394.14-33)]


| View in  |

Keywords: Acid heterogeneous catalysts; base heterogeneous catalysts; fragrances synthesis
Funding: Ministry of Education and Culture, Indonesia, under Fundamental research grant

Article Metrics:

  1. Hagen, J. (2006). Industrial Catalysis, Second Edition. Wiley-VCH Verlag GmbH & Co. KgaA:Weinheim, Germany
  2. Fritter, G., Bajgrowicz, J. A., and Kraft, P. (1998). Fragrance Chemistry. Tetrahedron, 54:7633-7703
  3. International Trade Center (ITC). (2011). Essential Oils and Oleoresins. Market News Service (MNS), MNS/ITC, Quarterly Edition
  4. Guzik, A. F. and Nowak, I. (2009). Mesoporous niobosilicates serving as catalysts for synthesis of fragrances. Catalysis Today, 142:288–292
  5. Hensen, K., Mahaim, C., Hӧlderich, W. F. (1997). Alkoxylation of limonene and alpha-pinene over beta zeolite as heterogeneous catalyst. Applied Catalysis A: General , 149:311-329
  6. Murphy, E. F., Mallat, T., Baiker, A. (2000). Allylic oxofunctionalization of cyclic olefins with homogeneous and heterogeneous catalysts. Catalysis Today, 57:115–126
  7. Climent, M.J., Corma, A., and Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chem. Rev., 111:1072–1133
  8. Freese, U., Heinrich, F., Roessner, F. (1999). Acylation of aromatic compounds on H-Beta zeolites, Catalysis Today, 49:237-244
  9. Sheldon, R. A. and Downing, R. S. (1999). Heterogeneous catalytic transformations for environmentally friendly production. Applied Catalysis A: General, 189:163–183
  10. Helwani, Z., Othman, M. R., Aziz, N., Kim, J., Fernando, W. J. N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363:1–10
  11. Bao, Q, Qiao, K., Tomida, D., Yokoyama, C. (2009). Acetalization of carbonyl compounds catalyzed by GaCl3 immobilized on imidazolium-styrene copolymers. Catalysis Communications, 10:1625–1628
  12. Kozhevnikov, I. V. (2009). Heterogeneous acid catalysis by heteropoly acids: Approaches to catalyst deactivation. Journal of Molecular Catalysis A: Chemical, 305:104–111
  13. Leng, Y., Wang, J., Zhu, D., Wu, Y., Zhao, P. (2009). Sulfonated organic heteropolyacid salts: Recyclable green solid catalyst for esterifications. Journal of Molecular Catalysis. A Chemical, 313(1-2):1-6
  14. de Meirelesa, A. L. P., da Silva Rocha, K. A., Kozhevnikov, I. V., Gusevskaya, E. V. (2011). Esterification of camphene over heterogeneous heteropoly acid catalysts: Synthesis of isobornyl carboxylates. Applied Catalysis A: General, 409– 410:82– 86
  15. da Silva Rocha, K. A., Rodrigues, N. V. S., Kozhevnikov, I. V., Gusevskaya, E. V. 2010, Heteropoly acid catalysts in the valorization of the essential oils: Acetoxylation of b-caryophyllene, Applied Catalysis A: General, 374, 87–94
  16. da Silva Rocha, K. A., Robles-Dutenhefner, P. P., Kozhevnikov, I. V., Gusevskaya, E. V. (2009). Phosphotungstic heteropoly acid as efficient heterogeneous catalyst for solvent-free isomerization of a-pinene and longifolene. Applied Catalysis A: General, 352:188–192
  17. Justus, J., Vinu, A., Devassy, B. M., Balasubramanian, V. V., Bohringer, W., Fletcher, J., Halligudi, S. B. (2008). Highly efficient and chemo selective catalyst system for the synthesis of blossom orange fragrance and flavoring compounds. Catalysis Communications, 9:1671–1675
  18. Atalay, B. and Gunduz, G.. (2011). Isomerizaton of a-pinene over H3PW12O40 catalysts supported on natural zeolite. Chemical Engineering Journal, 168:1311–1318
  19. Dijs, I. J., van Ochten, H. L. F. van Walree, C. A. , Geus, J. W., Jenneskens, L. W. (2002). Alkyl sulphonic acid surface-functionalised silica as heterogeneous acid catalyst in the solvent-free liquid-phase addition of acetic acid to camphene. Journal of Molecular Catalysis A: Chemical, 188:209–224
  20. Umbarkar, S. B., Kotbagi, T. V., Biradar, A. V., Pasrich, R., Chanale, J., Dongare, M. K., Mamede, A. S., Lancelot, C., Payen, E. (2009). Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. Journal of Molecular Catalysis A: Chemical, 310:150–158
  21. Niwa, M., Katada, N., Okumura, K. (2010). Characterization and Design of Zeolite Catalysts, Solid Activity, Shape Selectivity and Loading Properties, Sringer-Verlag Berlin Heidelberg
  22. Climent, M. J., Corma, A., Iborra, S., Epping, K., and Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225:316–326
  23. Climent, M. J., Corma, A., Velty, A. , and Susarte, M. (2000). Zeolites for the Production of Fine Chemicals: Synthesis of the Fructone Fragrancy. Journal of Catalysis, 196:345–351
  24. Candu, N., Florea, M., Coman, S. M., Parvulescu, V. I. (2011). Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 393:206–21
  25. Kantam, M. L., Choudary, B. M., Kumar, N. S., Ramprasad, K. V. (2005). Beta zeolite: an efficient and eco-friendly catalyst for the nitration of o-xylene with high regio-selectivity in liquid phase. Journal of Molecular Catalysis A: Chemical, 229:67–70
  26. Yongzhong, Z., Yuntong, N., Jaenicke, S., Chuah, G. K. (2005). Cyclisation of citronellal over zirconium zeolite beta-a highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis, 229:404–413
  27. Climent, M. J., Corma, A., Velty, A. (2004). Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 263:155–161
  28. Thomas, B., Prathapan,S., Sugunan, S. (2005). Synthesis of dimethyl acetal of ketones: design of solid acid catalysts for one-pot acetalization reaction. Microporous and Mesoporous Materials, 80:65–72
  29. Padró, C. L., Rey, E. A., Peña, L. F. G, Apesteguía, C. R. (2011). Activity, selectivity and stability of Zn-exchanged NaY and ZSM5 zeolites for the synthesis of o-hydroxyacetophenone by phenol acylation. Microporous and Mesoporous Materials, 143:236–242
  30. Singh, A. P. and Pandey, A. K. (1997). Acetylation of benzene to acetophenone over zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 123:141-l 47
  31. Osterholm, H., Kumar, N., Lindblad, M, Tiitta, M., Salmi,T., Murzin, D. (2011). Characterization of MFI and BEA embedded in mesoporous molecular sieve – Thermal stability. Microporous and Mesoporous Materials, xxx:xxx–xxx
  32. Wang, J., Hua, W., Yue, Y., Gao, Z. (2010). MSU-S mesoporous materials: An efficient catalyst for isomerization of a-pinene. Bioresource Technology, 101:7224–7230
  33. Lal, J., Sharma, M., Gupta, S., Parashar, P., Sahu, P., Agarwal, D. D. (2012). Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions. Journal of Molecular Catalysis A: Chemical, 352:31– 37
  34. Misra, C. And Perrotta, J. (1992). Composition and Properties of Synthetic Hydrotalcites, Clays and Clay Minerals, 40(2):145-150
  35. Padmasri, A. H., Venugopal, A., Kumari, V. D., Rao, K. S. R., Rao P. K. (2002). Calcined Mg–Al, Mg–Cr and Zn–Al hydrotalcite catalysts for tert-butylation of phenol with iso-butanol: a comparative study. Journal of Molecular Catalysis A: Chemical, 188:255–265
  36. Srivastava, V. K., Bajaj, H. C., Jasra, R. V. (2003). Solid base catalysts for isomerization of 1-methoxy-4- (2-propen-1-yl)benzene to 1-methoxy-4- (1-propen-1-yl)benzene. Catalysis Communications, 4:543–548
  37. Sharma, S. K., Parikh, P. A., Jasra, R. V. (2007). Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. Journal of Molecular Catalysis A: Chemical, 278:135–144
  38. Patel, H. A., Sharma, S. K., Jasra, R. V. (2008). Synthetic talc as a solid base catalyst for condensation of aldehydes and ketones. Journal of Molecular Catalysis A: Chemical, 286:31–40

Last update: 2021-02-26 19:06:43

No citation recorded.

Last update: 2021-02-26 19:06:44

  1. Microwave rehydrated Mg-Al-LDH as base catalyst for the acetalization of glycerol

    Prakruthi H.. Catalysis Science and Technology, 5 (7), 2015. doi: 10.1039/c5cy00347d
  2. Catalytic activities of Fe3+- and Zn2+-natural zeolite on the direct cyclisation-acetylation of (R)-(+)-citronellal

    Cahyono E.. Bulletin of Chemical Reaction Engineering and Catalysis, 9 (2), 2014. doi: 10.9767/bcrec.9.2.5936.127-134
  3. Fe(III)-catalyzed α-terpinyl derivatives synthesis from β-pinene via reactions with hydrogen peroxide in alcoholic solutions

    Da Silva M.. RSC Advances, 5 (14), 2015. doi: 10.1039/c4ra13112f
  4. Redox properties of LDH microcrystals coated with a catechol-bearing phosphonate derived from dopamine

    De Victoria Rodríguez M.. RSC Advances, 4 (51), 2014. doi: 10.1039/c4ra03660c