Oxidation of Catechol using Titanium Silicate (TS-1) Catalyst: Modeling and Optimization

*Sonali Sengupta -  Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302,, India
Jayanta Kumar Basu -  Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302,, India
Debarpita Ghosal -  Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302,, India
Received: 22 Apr 2013; Published: 1 Dec 2013.
Open Access
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 2303 683
Abstract
The oxidation of catechol was studied in an eco-friendly process with commercial titanium silicate-1 (TS-1) catalyst and hydrogen peroxide as oxidant in absence of all mass transfer effects. The process was opti-mized by Box-Behnken design in terms of three independent process variables such as reaction tempera-ture, moles of hydrogen peroxide per mole of catechol and catalyst amount whose optimum values of the process variables were found to be 60 °C, 13.2 and 1.24 g respectively for maximum conversion of 75.8 %. The effects of different process parameters such as mole ratio of hydrogen peroxide to catechol, catalyst par-ticle size, catalyst amount, temperature and reaction time were studied. A pseudo first order kinetic model was fitted with the experimental rate data. The apparent activation energy for the reaction was found to be 11.37 kJ/mole.  © 2013 BCREC UNDIP. All rights reserved

Received: 22nd April 2013; Revised: 25th October 2013; Accepted: 1st November 2013

[How to Cite: Sengupta, S., Ghosal, D., Basu, J.K. (2013). Oxidation of Catechol using Titanium Silicate (TS-1) Catalyst: Modeling and Optimization. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2): 167-177. (doi:10.9767/bcrec.8.2.4759.167-177)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4759.167-177]

Keywords
Catechol; oxidation; TS-1; box-behnken design; kinetic study

Article Metrics:

  1. Sheldon, R. A. (1996). Selective catalytic synthesis of fine chemicals: opportunities and trends. Journal of Molecular Catalysis A: Chemical, 107: 75-83.
  2. Rafelt, J.S., Clark, J. H. (2000). Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis. Catalysis Today, 57: 33-34.
  3. Sheldon, R. A. (2008). E factors, green chemistry and catalysis: An odyssey. Chemical Communication, 29: 3352-3365.
  4. Mukherjee, P., Bhaumik, A., Kumar, R. (2007). Eco-friendly, Selective Hydroxylation of C-7 Aromatic Compounds Catalyzed by TS-1/H2O2 System under Solvent-free Solid-Liquid-Liquid-Type Triphase Conditions. Industrial and Engineering Chemistry Research, 46: 8657-8664.
  5. Sherman, J. D. (1999). Synthetic zeolites and other microporous oxide molecular sieves. Proceedings of National Acadamy of Science, 96: 3471-3478.
  6. Notari, B. (1996). Microporous Crystalline Titanium Silicates. Advance Catalysis, 41: 253-334.
  7. Ratnasamy, P., Srinivas, D., Knözinger, H. (2004). Active Sites and Reactive Intermediates in Titanium Silicate Molecular Sieves. Advance Catalysis, 48: 1-169.
  8. Vayssilov, G. N., Popova, Z., Tuel, A. (1997). Catalytic Oxidation of Anisole Over Titanium Silicalite- 1. Chemical Engineering and Technology, 20: 333-337.
  9. Gao, H., Lu, G., Suo, J. , Li, S. (1996). Epoxidation of allyl chloride with hydrogen peroxide catalyzed by titanium silicalite 1. Applied Catalysis: General, 138: 27-38.
  10. Esposito, A., Taramasso, M., Neri, C. (1983). Enichem, U.S. Patent 4; 396, 783.
  11. Clerici, M. G. (1991). Oxidation of saturated hydrocarbons with hydrogen peroxide catalysed by titanium silicalite. Applied Catalysis, 68: 249-261.
  12. Mantegazza, M. A., Petrini, G., Spano, G., Bagatin, R., Rivetti, F. (1999). Selective oxidations with hydrogen peroxide and titanium silicalite catalyst. Journal of Molecular Catalysis A: Chemical, 146: 223-228.
  13. Maspero, F., Romano, U. (1994). Oxidation of alcohols with H2O2 catalysed by titanium silicate-1. Journal Catalysis, 146: 476-482.
  14. Reddy, J.S., Jacobs, P.A. (1996). Selective oxidation of secondary amines over titanium silicalite molecular sieves, TS- 1 and TS-2. Catalysis Letter, 37: 213-216.
  15. Robinson, D.J., Davies, L., McGuire, N., Lee, D. F., McMorn, P., Willock, D. J., Watson, G. W., Page, P. C. B., Bethell , D., Hutchings, G. (2000). Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst. Journal of Physical Chemistry, 2: 1523-1529.
  16. Prasad, M.R., Kamalakar, G., Madhavi, G., Kulkarni, S.J., Raghavan, K.V. (2002). An efficient synthesis of heterocyclic N-oxides over molecular sieve catalysts. Journal Molecular Catalysis A: Chemical, 186: 109-120.
  17. van der Pol, A.J.H.P., van Hoof, J.H.C. (1993). Oxidation of linear alcohols with hydrogen peroxide over titanium silicate-1. Applied Catalysis A: General, 106: 97-113.
  18. Hitomi, Y., Ando, A., Matsui, H., Ito, T., Tanaka, T.,. Ogo, S., Funabiki T. (2005). Aerobic Catechol Oxidation Catalyzed by a Bis(í-oxo)dimanganese (III,III) Complex via a Manganese(II)-Semiquinonate Complex. Inorganic Chemistry, 44: 3473-3478.
  19. Jackson, H. (1939). The oxidation of catechol and 1:2 :4-trihydroxybenzene by polyphenol oxidase. Journal of Biochemistry, 33(9): 1452-1459.
  20. Wegner, R., Gottschaldt, M., Görls,H., Jäger, E.Klemm, D. (2001). Copper(II)Complexesof Aminocarbohydrate b-Ketoenaminic Ligands: Efficient Catalysts in Catechol Oxidation. Chemistry A European Journal, 7(10): 2143-2157.
  21. Louloudi, M., Mitopoulou, K., Evaggelou, E., Deligiannakis, Y., Hadjiliadis, N. (2003). Homogeneous and heterogenized copper (II) complexes as catechol oxidation catalysts. Journal of Molecular Catalysis A: Chemical, 198: 231-240.
  22. Chittilappilly, P. S., Sridevi N., Yusuff, K.K.M. (2008). Ruthenium complexes of Schiff base ligands as efficient catalysts for catechol–hydrogen peroxide reaction Journal of Molecular Catalysis A: Chemical, 286: 92-97.
  23. Khouw, C., Dartt, C. B., Labinger, J.A., Davis, M. E. (1994). Studies on the catalytic oxidation of alkanes and alkenes by titanium silicates. Journal of Catalysis, 149: 195-205.
  24. Corma A., Esteve, P., Martinez, A. (1996). Kinetics of the oxidation of alcohols by hydrogen peroxide on Ti-beta zeolite: the influence of alcohol structure on catalyst reactivity. Applied Catalysis A: General., 143: 87-100.
  25. Wroblewska, A., Fajdek, A., Milchert, E. (2009). Synthesis and characteristics of titanium silicalite TS-1, Ti-Beta and Ti-MWW catalysts. Journal of Chemical Technology, 11(1) : 64-71.
  26. Martens, J., Buskens, P., Jacobs, P., van der Pol A.J.H.P., van Hooff, J.H.C., Ferrini C., Kouwenhoven H., Kooyman P., van Bekkum H. (1993). Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis, 99 :71-84.
  27. Ramaswamy, A.V., Sivasanker, S. (1993). Selective oxidation reactions over titanium and vanadium metallosilicate molecular sieves. Catalysis Letter, 22: 239-249.
  28. Daroux, M., Zamani, H., Greffe J. L., Bordet,J. (1981). Use of Factorial Design of Experiments in Bulk Polymerization of Styrene. Chemical Engineering Journal, 22: 125-132.
  29. Ravikumar, K., Pakshirajan, K., Swaminathanc, T., Balu, K. (2005). Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chemical Engineering Journal, 105: 131-138.
  30. Büyüksönmez, F, Hess T.F., Crawford R.L., Paszczynski A., Watts R. J. (1999). Optimization of Simultaneous Chemical and Biological Mineralization of Perchloroethylene. Journal of Applied Environmental Microbiology, 65: 2784-2788.
  31. Jose N., Sengupta S., Basu J.K. (2011). Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel, 90(2): 626-632.
  32. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D. , David, J.M., Brand˜ao, G.C. , da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597: 179-186.
  33. Raoof, J. B., Kiani, A., Ojani R., Sakhavi, F., Hamidi, A.S. (2010). Potentiometric effect of L-penicillamine on a belousov-zhabotinskii oscillating chemical reaction: Application to determination of L-penicillamine. Analytical & Bioanalytical. Electrocheistry :2(4),189-201.
  34. Cui, S., Ma F., Wang Y. (2007). Oxidative desulfurization of model diesel oil over Ti-containing molecular sieves using hydrogen peroxide Reaction Kinetics & Catalysis Letter, 92(1): 155-163.
  35. Montgomery, D. C., (1991). Design and Analysis of Experiments, 3rd ed., Wiley: NewYork.
  36. Fogler, H. S. (2006). Elements of Chemical Reaction Engineering; 4th ed., Prentice-Hall.