skip to main content

The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

R.Y. Raskar  -  Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
*A. G. Gaikwad  -  Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

Citation Format:
Cover Image
Abstract
The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV) 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reserved

Received: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013

[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014). The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 1-15. (doi:10.9767/bcrec.9.1.4899.1-15)

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15]

Fulltext View|Download
Keywords: Captured CO2; conversion of CO2; copper and zinc aluminates; solid-solid fusion method; effect of temperature; effect of mol ratio

Article Metrics:

  1. Hutson, N. D., Attwood, B. C. (2008). High-temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption. 14: 781-789
  2. Yong, Z., Mata, V., Rodriguez, A. E. (2001). Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial Engineering and. Chemistry Research. 40: 204-209
  3. Nakagawa, K., Kato, M., Yoshikawa, S., Essa-ki, K., Uemoto, K. (2003). Second annual conference on carbon sequestration. May 5-8 Hilton Alexandria mark centre Alexandria, VA
  4. Iwan, A., Stephenson, H., Ketchie, W. C., Lapkin, A. A. (2009). High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal 146: 249-258
  5. Yi, K. B., Eriksen, D. O. (2006). Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science Technology 41: 283-296
  6. Kalinkin, A. M., Boldyrev, V. V., Politov, A. A., Kalinkina, E. V., Makaraov, V. N., Kalinnkov, V. T. (2003). Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Physics and Chemistry. 29: 410-414
  7. Fauth, D. J., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W. (2004). CO2 scrubbing with novel lithium zirconate sorbents. Preprints American Chemical Society Division Fuel Chemistry (SAUS). 49: 310-311
  8. Fauth, D. J., Frommell, E. A., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W. (2005). Eutetic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Processing Technology. 86: 1503-1521
  9. Ide, J. I., Xiong, R., Lin, Y. S. (2005). Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation Purification Technology. 36: 41-51
  10. Matsushita, F., Aono, Y., Shibata, S. (2004). Calcium silicate structure and carbonation shrinkage of a tobermorite-based material. Cement Concrete Research. 34: 1251–1257
  11. Minghua, W., Gon, L. C., Kul, R. C. (2008). CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy. 33: 6368–6372
  12. Fernandez, E. O., Ronning, M., Grande, T., Chen, D. (2006). Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture. Chemistry Material. 18: 1383-1385
  13. Fernandez, E. O., Ronning, M., Grande, T., Chen, D. (2006). Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chemistry Material. 18: 6037-6046
  14. Pfeiffer, H., Bosch. P. (2005). Thermal stabil-ity and high-temperature carbon dioxide sorption on hexalithium zirconate (Li6Zr2O7). Chemistry Materials. 17: 1704-1710
  15. Hung, X. H., Chang, J. (2007). Low-temperature synthesis of nanocrystalline betadicalcium silicate with high specific surface area. Journal of Nanoparticle Research. 9: 1195-1200
  16. Xu, C. Y., Zhen, I., Yang, R., Wang, Z. L. (2007). Synthesis of single-crystalline niobate nanorods via ion exchange base on molten-salt reaction. Journal of American Chemical Society (Communication). 129: 15444-15445
  17. Hellstrom, E. E., Gool, W. V. (1981). Li ion conduction in Li2ZrO3, Li4ZrO4 and LiScO2. Solid State Ionics. 2: 59-64
  18. Hu, C., Shih, Y. K., Leckie, J.O. (2010). The formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge. Journal of Hazardous Material. 181: 399-404
  19. Davar, F., Niasari, M. S. (2011). Synthesis and characterisations of spinal type zinc aluminate nanoparticles by a modified sol-gel method using new precursors. Journal of Alloys Compounds. 509: 2487-2492
  20. Kiss, E., Ratkovic, S., Vujieie, D., Boskovic, G. (2012). Accelerated polymorphous transformations of alumina induced by copper ions mpede spinal formations. Indian Journal of Chemistry. 51: 1669-1676
  21. Jamal, E. M. A., Sakthikumar, D., Anantharaman, M. R. (2011). On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bulletin of Material Science. 34: 251-259
  22. Tang, Y., Shih, K., Wang, Y., Chong, T. (2011). Zinc stabilizations efficiency of aluminate spinal structure and its leaching behaviour. Environmental Science Technology. 45: 10544-10550
  23. Waugh, K. C. (2012). Methanol synthesis. Catalysis Letters. 142: 1153–1166
  24. Wang, W., Gong, J. (2011). Methanation of carbon dioxide: an overview. Frontier in Chemical Science and Engineering. 5: 2–10
  25. Carnes, C. L., Klabunde, K. J. (2003). The catalytic methanol synthesis over nanoparticle metal oxide catalysts. Journal of Molecular Catalysis A: Chemical. 194: 227–236
  26. Zheng, J., Zhou, Y., Zhi, Y. T. (2012). Sorption equilibria of CO2 on silica-gels in the presence of water. Adsorption. 18: 121-126
  27. Aschenbrenner, O., Styring, P. (2010). Comparative study of solvent properties for carbon dioxide absorption. Energy Environmental Science. 3: 1106-1113
  28. Satcher, J. H., Baker, Jr. S. E., Kulik, H. J., Valdez, C. A., Krueger, R. L., Lighttstone, F. C., Aines, R. D. (2011). Modeling, synthesis and characterization of zinc containing carbonic anhydrase active site mimics. Energy Procedia. 4: 2090-2095
  29. Adschiri, T., Kanazawa, K., Arai, K. (1992). Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. Journal of American Ceramic Society. 75: 1019-1022
  30. Shido, T., Iwasawa, Y. (1991). Reactant-promoted reaction mechanism for water shift reaction on ZnO as the genisis of surface catalysis. Journal of Catalysis. 129: 343-355
  31. Wu, J. M., Li, Z. Z. (2000). Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. Journal of Alloys Compounds. 299: 9–16
  32. Ginés, M. J. L., Marchi, A. J., Apesteguía, C. R. (1997). Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Applied Catalysis. 154: 155-171
  33. Gawande, M. B., Pandey, R. K., Jayaram, R. V. (2012). Role of mixed metal oxides in catalysis science versatile applications in organic synthesis. Catalysis Science and Technology. 2: 1113–1125
  34. Baross, J. A., Lilley, M. D., Gordon, L. I. (1982). Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria?. Nature. 298: 366-368
  35. Cahn, R. W. (1990). Nanostructured materials. Nature. 348: 389-390
  36. Wei, X., Chen, D. (2006). Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique. Material Letters. 60: 823–827
  37. Ghanti, E., Nagarajan, R. (2010). Synthesis of CuAl2(acac)4(OiPr)4, its hydrolysis and formation of bulk CuAl2O4 from the hydrolyzed gels; a case study of molecules to materials. Dalton Transaction. 39: 6056–6061
  38. Zou, L., Li, F., Xiang, X., Evans, D. G., Duan, X. (2006). Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor. Chemistry Material. 18: 5852-5859
  39. Azizi, S. N., Tilami, S. E. (2009). Theoretical and experimental 27Al NMR chemical shift studies on end-group aluminates linked to dif-ferent silicate species. Journal of Chinese Chemical Society. 56 : 898-907
  40. Wyers, G. P., Cordfunke, E. H. P., Aouweltjes, W. (1989). The standard molar enthalpies of formation of the lithium zirconates. Journal of Chemical Thermodynamics. 21: 1093-1100

Last update:

No citation recorded.

Last update:

No citation recorded.