The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

R.Y. Raskar -  Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
*A. G. Gaikwad -  Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
Received: 13 May 2013; Published: 12 Mar 2014.
Open Access
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 1162 593
Abstract
The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV) 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reserved

Received: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013

[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014). The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 1-15. (doi:10.9767/bcrec.9.1.4899.1-15)

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15]

Keywords
Captured CO2; conversion of CO2; copper and zinc aluminates; solid-solid fusion method; effect of temperature; effect of mol ratio

Article Metrics:

  1. Hutson, N. D., Attwood, B. C. (2008). High-temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption. 14: 781-789.
  2. Yong, Z., Mata, V., Rodriguez, A. E. (2001). Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial Engineering and. Chemistry Research. 40: 204-209.
  3. Nakagawa, K., Kato, M., Yoshikawa, S., Essa-ki, K., Uemoto, K. (2003). Second annual conference on carbon sequestration. May 5-8 Hilton Alexandria mark centre Alexandria, VA.
  4. Iwan, A., Stephenson, H., Ketchie, W. C., Lapkin, A. A. (2009). High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal 146: 249-258.
  5. Yi, K. B., Eriksen, D. O. (2006). Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science Technology 41: 283-296.
  6. Kalinkin, A. M., Boldyrev, V. V., Politov, A. A., Kalinkina, E. V., Makaraov, V. N., Kalinnkov, V. T. (2003). Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Physics and Chemistry. 29: 410-414.
  7. Fauth, D. J., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W. (2004). CO2 scrubbing with novel lithium zirconate sorbents. Preprints American Chemical Society Division Fuel Chemistry (SAUS). 49: 310-311.
  8. Fauth, D. J., Frommell, E. A., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W. (2005). Eutetic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Processing Technology. 86: 1503-1521.
  9. Ide, J. I., Xiong, R., Lin, Y. S. (2005). Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation Purification Technology. 36: 41-51.
  10. Matsushita, F., Aono, Y., Shibata, S. (2004). Calcium silicate structure and carbonation shrinkage of a tobermorite-based material. Cement Concrete Research. 34: 1251–1257.
  11. Minghua, W., Gon, L. C., Kul, R. C. (2008). CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy. 33: 6368–6372
  12. Fernandez, E. O., Ronning, M., Grande, T., Chen, D. (2006). Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture. Chemistry Material. 18: 1383-1385.
  13. Fernandez, E. O., Ronning, M., Grande, T., Chen, D. (2006). Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chemistry Material. 18: 6037-6046.
  14. Pfeiffer, H., Bosch. P. (2005). Thermal stabil-ity and high-temperature carbon dioxide sorption on hexalithium zirconate (Li6Zr2O7). Chemistry Materials. 17: 1704-1710.
  15. Hung, X. H., Chang, J. (2007). Low-temperature synthesis of nanocrystalline betadicalcium silicate with high specific surface area. Journal of Nanoparticle Research. 9: 1195-1200.
  16. Xu, C. Y., Zhen, I., Yang, R., Wang, Z. L. (2007). Synthesis of single-crystalline niobate nanorods via ion exchange base on molten-salt reaction. Journal of American Chemical Society (Communication). 129: 15444-15445.
  17. Hellstrom, E. E., Gool, W. V. (1981). Li ion conduction in Li2ZrO3, Li4ZrO4 and LiScO2. Solid State Ionics. 2: 59-64.
  18. Hu, C., Shih, Y. K., Leckie, J.O. (2010). The formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge. Journal of Hazardous Material. 181: 399-404.
  19. Davar, F., Niasari, M. S. (2011). Synthesis and characterisations of spinal type zinc aluminate nanoparticles by a modified sol-gel method using new precursors. Journal of Alloys Compounds. 509: 2487-2492.
  20. Kiss, E., Ratkovic, S., Vujieie, D., Boskovic, G. (2012). Accelerated polymorphous transformations of alumina induced by copper ions mpede spinal formations. Indian Journal of Chemistry. 51: 1669-1676.
  21. Jamal, E. M. A., Sakthikumar, D., Anantharaman, M. R. (2011). On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bulletin of Material Science. 34: 251-259.
  22. Tang, Y., Shih, K., Wang, Y., Chong, T. (2011). Zinc stabilizations efficiency of aluminate spinal structure and its leaching behaviour. Environmental Science Technology. 45: 10544-10550.
  23. Waugh, K. C. (2012). Methanol synthesis. Catalysis Letters. 142: 1153–1166.
  24. Wang, W., Gong, J. (2011). Methanation of carbon dioxide: an overview. Frontier in Chemical Science and Engineering. 5: 2–10.
  25. Carnes, C. L., Klabunde, K. J. (2003). The catalytic methanol synthesis over nanoparticle metal oxide catalysts. Journal of Molecular Catalysis A: Chemical. 194: 227–236.
  26. Zheng, J., Zhou, Y., Zhi, Y. T. (2012). Sorption equilibria of CO2 on silica-gels in the presence of water. Adsorption. 18: 121-126.
  27. Aschenbrenner, O., Styring, P. (2010). Comparative study of solvent properties for carbon dioxide absorption. Energy Environmental Science. 3: 1106-1113.
  28. Satcher, J. H., Baker, Jr. S. E., Kulik, H. J., Valdez, C. A., Krueger, R. L., Lighttstone, F. C., Aines, R. D. (2011). Modeling, synthesis and characterization of zinc containing carbonic anhydrase active site mimics. Energy Procedia. 4: 2090-2095.
  29. Adschiri, T., Kanazawa, K., Arai, K. (1992). Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. Journal of American Ceramic Society. 75: 1019-1022.
  30. Shido, T., Iwasawa, Y. (1991). Reactant-promoted reaction mechanism for water shift reaction on ZnO as the genisis of surface catalysis. Journal of Catalysis. 129: 343-355.
  31. Wu, J. M., Li, Z. Z. (2000). Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. Journal of Alloys Compounds. 299: 9–16.
  32. Ginés, M. J. L., Marchi, A. J., Apesteguía, C. R. (1997). Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Applied Catalysis. 154: 155-171.
  33. Gawande, M. B., Pandey, R. K., Jayaram, R. V. (2012). Role of mixed metal oxides in catalysis science versatile applications in organic synthesis. Catalysis Science and Technology. 2: 1113–1125.
  34. Baross, J. A., Lilley, M. D., Gordon, L. I. (1982). Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria?. Nature. 298: 366-368.
  35. Cahn, R. W. (1990). Nanostructured materials. Nature. 348: 389-390.
  36. Wei, X., Chen, D. (2006). Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique. Material Letters. 60: 823–827.
  37. Ghanti, E., Nagarajan, R. (2010). Synthesis of CuAl2(acac)4(OiPr)4, its hydrolysis and formation of bulk CuAl2O4 from the hydrolyzed gels; a case study of molecules to materials. Dalton Transaction. 39: 6056–6061.
  38. Zou, L., Li, F., Xiang, X., Evans, D. G., Duan, X. (2006). Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor. Chemistry Material. 18: 5852-5859.
  39. Azizi, S. N., Tilami, S. E. (2009). Theoretical and experimental 27Al NMR chemical shift studies on end-group aluminates linked to dif-ferent silicate species. Journal of Chinese Chemical Society. 56 : 898-907.
  40. Wyers, G. P., Cordfunke, E. H. P., Aouweltjes, W. (1989). The standard molar enthalpies of formation of the lithium zirconates. Journal of Chemical Thermodynamics. 21: 1093-1100