Ceria Zirconia Mixed Oxides Prepared by Hydrothermal Templating Method for the Oxidation of Ethyl Benzene

*Cimi A Daniel  -  Department of Applied Chemistry, Cochin University of Science and Technology, Cochin-682022, Kerala,, India
S. Sugunan  -  Department of Applied Chemistry, Cochin University of Science and Technology, Cochin-682022, Kerala,, India
Received: 4 Jun 2013; Published: 1 Dec 2013.
Open Access
Citation Format:
Cover Image
CeO2–ZrO2 oxides were prepared by the surfactant-templated method using cetyl trimethyl ammonium bromide (CTAB) as template. These were characterized by XRD, FT-IR, TEM, SEM, BET and TPD-CO2. The XRD data showed that as prepared CeO2-ZrO2 powder particles have single phase cubic fluorite structure. HRTEM shows mesoscopic ordering. Average particle size is 12-13 nm as calculated from particle histogram. The nitrogen adsorption/desorption isotherm were classified to be type IV isotherm, typical of mesoporous material. The presence of uni-modal mesopores are confirmed by the pore size distribution which shows pore distribution at around 60 A°. The catalytic activities of the prepared material were tested in liquid phase oxidation of ethylbenzene with tert-butyl hydroperoxide (TBHP) as an oxidant. Ceria zirconia catalyst modified with chromium was active for ethylbenzene conversion (65.3%) with 77% selectivity towards acetophenone.  © 2013 BCREC UNDIP. All rights reserved

Received: 4th June 2013; Revised: 20th July 2013; Accepted: 18th August 2013

[How to Cite: Daniel, C.A., Sugunan, S. (2013). Ceria Zirconia Mixed Oxides Prepared by Hydrothermal Templating Method for the Oxidation of Ethyl Benzene. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2): 97-104. (doi:10.9767/bcrec.8.2.5053.97-104)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.5053.97-104]

Keywords: Mixed rare earth oxide; Ceria–zirconia; XRD; Ethylbenzene oxidation.

Article Metrics:

  1. Jen, H.-W., Graham, G.W., Chun, W., McCabe, R.W., Cuif, J.-P., Deutsch, S.E., Touret, O. (1999). Characterization of model automotive exhaust catalysts: Pd on ceria and ceria–zirconia supports. Catalysis Today, 50: 309-328
  2. Ozaki, T., Masui, T., Machida, K., Adachi, G., Sa-kata, T., Mori, H. ( 2000). Redox behavior of sur-face-modified CeO2-ZrO2 catalysts by chemical filling process. Chemistry of Materials, 12: 643-649
  3. Thammachart, M., Meeyoo, V., Risksomboon, T., Osuwan, S. (2001). Catalytic activity of CeO2–ZrO2 mixed oxide catalysts prepared via sol–gel technique: CO oxidation. Catalysis Today, 68: 53-61
  4. Huang, J., Yang, L., Gao, R., Mao, Z., Wang, C. (2006). A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite elec-trolyte at low temperatures. Electrochemistry Communications, 8: 785–789
  5. Takamura, H., Ogawa, M., Suehiro, K., Takaha-shi, H., Okada, M. (2008). Fabrication and charac-teristics of planar-type methane reformer using ceria-based oxygen permeable membrane. Solid State Ionics, 179: 1354–1359
  6. Yuana, Z.-Y., Idakiev, V., Vantomme, A., Ta-bakova, T., Ren, T.-Z., Su, B.-L. (2008). Mesopor-ous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction. Catalysis Today, 131:203–210
  7. Yuzhakova, T., Rakic, V., Guimon, C., Auroux, A. (2007). Preparation and Characterization of Me2O3-CeO2 (Me = B, Al, Ga, In) Mixed-Oxide Catalysts. Chemistry of Materials, 19: 2970-2981
  8. Reddy, B.M., Bharali, P., Saikia, P., Khan, A., Loridant, S., Muhler, M., Grunert, W. (2007). Haf-nium Doped Ceria Nanocomposite Oxide as a Novel Redox Additive for Three-Way Catalysts. The Journal of Physical Chemistry C, 111:1878–1881
  9. Tembe, G.L., Ganeshpure, P.A., Satish, S.. (1997). Oxidation of alkanes by tert-butyl hydroperoxide catalyzed by polynuclear manganese Schiff base complexes. Journal of Molecular Catalysis A: Chemical, 121:17–23
  10. Alcantara, R., Canoira, L., Joao, P.G., Santos, J.-M., Vazquez, I. (2000). Ethylbenzene oxidation with air catalysed by bis (acetylacetonate) nickel (II) and tetra-n-butylammonium tetrafluorobo-rate. Applied Catalysis A: General, 203: 259 –268
  11. Mal, N.K., Ramaswamy, V., Ganapathy, S., Ramaswamy, A.V. (1995). Synthesis of tin-silicalite molecular sieves with MEL structure and their catalytic activity in oxidation reactions. Applied Catalysis A: General, 125: 233–245
  12. Radhika, T., Sugunan, S. (2007). Vanadia sup-ported on ceria: Characterization and activity in liquidphase oxidation of ethylbenzene. Catalysis Communications, 8: 150-156
  13. Xavier, K.O., Chacko, J., Yusuf, K.M. ( 2004). Zeo-lite-encapsulated Co(II), Ni(II) and Cu(II) com-plexes as catalysts for partial oxidation of benzyl alcohol and ethylbenzene. Applied Catalysis A: General, 258: 251–259
  14. Kumar, P., Kumar, R., Pandey, B. (1995). Oxida-tive organic transformations catalyzed by tita-nium- and vanadium-silicate molecular sieves. Synlett., 4: 289-298
  15. Arshadi, M., Ghiaci, M., Ensafi, A.A., Karimi-Maleh, H., Suib, S.L. (2011). Oxidation of ethyl-benzene using some recyclable cobalt nanocata-lysts: The role of linker and electrochemical study. Journal of Molecular Catalysis A: Chemical, 338: 71–83
  16. Khan, S. (2011). Synthesis and characterization of mesoporous ceria-zirconia solid solution. M.Tech., Department of Chemical Engineering, Indian In-stitute of Technology, Madras
  17. Damyanova, S., Pawelec, B., Arishtirova, K., Mar-tinez Huerta, M.V., Fierro, J.L.G. ( 2008). Study of the surface and redox properties of ceria–zirconia oxides. Applied Catalysis A: General, 337: 86–96
  18. Damyanova, S., Perez, C.A., Schmal, M., Bueno, J.M.C. (2002). Characterization of ceria-coated alumina carrier. Applied Catalysis A: General, 234: 271-282
  19. Lopez, E.F., Escribano, V.S., Panizza, M., Carnas-ciali, M.M., Busca, G. ( 2001). Vibrational and electronic spectroscopic properties of zirconia pow-ders. Journal of Materials Chemistry, 11: 1891-1897
  20. Bensalem, A., Bozon-Verduraz, F., Delamar, M., Bugli, G. (1995). Preparation and characterization of highly dispersed silica-supported ceria. Applied Catalysis A: General. 121: 81-93
  21. Brayner, R., Ciuparu, D., da Cruz, G.M., Fievet-Vincent, F., Bozon-Verduraz, F. (2000). Prepara-tion and characterization of high surface area nio-bia, ceria–niobia and ceria–zirconia. Catalysis To-day, 57: 261-266
  22. Huiyun, L., Yinghong, Y., Changxi, M., Zaiku, X., Weiming, H., Zi, G. (2006). Preparation of highly active Cr2O3-SiO2 catalyst by sol-gel method for ethylbenzene dehydrogenation in the presence of CO2. Chinese Journal of Catalysis, 27: 4–6
  23. Tejuca, L.G., Bell, A.T., Fierro, J.L.G., Tascon, J.M.D. (1987). Temperature-programmed desorp-tion study of the interactions of H2, CO and CO2 with LaMnO3. Journal of the Chemical Society, Faraday Transactions 1, 83: 3149-3159
  24. Udovic, T.J., Dumesic, J.A. (1984). Adsorptive properties of magnetite surfaces as studied by temperature-programmed desorption: Studies of O2, NO, CO2, and CO adsorption. Journal of Ca-talysis, 89: 314-326
  25. Vetrivel, S., Pandurangan, A. (2004). Side-chain oxidation of ethylbenzene with tert butylhydrop-eroxide over mesoporous Mn-MCM-41 molecular sieves. Journal of Molecular Catalysis A: Chemi-cal, 217: 165–174

Last update: 2021-02-28 08:28:41

No citation recorded.

Last update: 2021-02-28 08:28:42

  1. Kinetic studies on Liquid phase transesterification-of dimethyl malonate with benzyl alcohol over modified ceria as efficient Solid acid catalysts

    Venkatesh . Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 57 (11), 2018.
  2. Liquid-phase ozonation of ethylbenzene

    Kuleshova T.S.. Voprosy Khimii i Khimicheskoi Tekhnologii, 127 (3), 2019. doi: 10.32434/0321-4095-2019-124-3-17-21
  3. Simple and efficient synthesis of jasminaldehyde over modified forms of zirconia: Acid-base bifunctional catalysis

    Kumar T.. Indian Journal of Chemical Technology, 24 (5), 2017.
  4. Oxidation of 4-brometylbenzene by ozone in acetic acid

    Galstyan A.. Eastern-European Journal of Enterprise Technologies, 5 (6), 2018. doi: 10.15587/1729-4061.2018.143207