skip to main content

Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

Rodiansono Rodiansono  -  Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Takayoshi Hara  -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
Nobuyuki Ichikuni  -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
*Shogo Shimazu  -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

Citation Format:
Cover Image
Abstract

A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH) and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH). H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reserved

Received: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013

[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 53-59. (doi:10.9767/bcrec.9.1.5529.53-59)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59]

Fulltext View|Download
Keywords: nanoporous Ni-Sn alloy; chemoselective hydrogenation; furfural; furfuryl alcohol

Article Metrics:

  1. Falbe, J., Bahrmann, H., Lipps, W., Meyer, D., in Ullmanns encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. 2005. Vol. 11, pp. 21
  2. Fujita, S.I., Sano, Y., Bhanage, B.M., Arai, M. (2004). Supported liquid-phase catalysts containing ruthenium complexes for selective hydrogenation of α, β-unsaturated aldehyde: importance of interfaces between liquid film, solvent, and support for the control of product selectivity. J. Catal. 225: 95-104
  3. Claus, P. (1998). Selective hydrogenation of a,b-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top. Catal. 5:51-62
  4. Gallezot, P., Richard, D. (1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catal. Rev. Sci. Eng. 40: 81-126
  5. Mäki-Arvela, P., Hajek, J., Salmi, T., Yu. Murzin, D. (2005). Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A. 292: 1-49
  6. Bianchini, C., Farnetti, E., Graziani, M., Nar-din, G., Vacca, A., Zanobini F. (1990). Electron-rich iridium complexes with mixed-donor polydentate ligands: chemoselective catalysts in hydrogen-transfer reduction of a,b-unsaturated ketones. J. Am. Chem. Soc. 112: 9190-9197
  7. Kaspar, J., Graziani, M., Escobar, G.P., Trovarelli, A. (1992). Chemoselective hydrogenation of unsaturated carbonyl compounds over groups 8 and 9 titania-supported metal catalysts. J. Molec. Catal. 72: 243-251
  8. De bruyn, M., Coman, S., Bota, R., Parvulescu, V.I., De Vos, D.E., Jacobs, P.A., (2003). Chemoselective reduction of complex a,b-unsaturated ketones to allylic alcohols over Ir-metal particles on b-zeolites. Angew. Chem. Int. Ed. 42: 5333-5336
  9. Sachtler, W.M.H., Van Santen, R.A. (1977). Surface composition and selectivity of alloy catalysts. Adv. Catal. 26: 69-119
  10. Dandekar, A., Vannice, M.A. (1999). Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts. J. Catal. 183: 344-354
  11. Clarke, J.K.A. (1975). Selectivity in catalysis by alloys. Chem. Rev. 75: 291-305
  12. Ferrando, R., Jellinek, J., Johnston, R.L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108: 846-910
  13. Jiang, H.L., Xu, Q. (2011). Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 21: 13705-13725
  14. Arana, J., Ramirez de la Piscina, P., Llorca, L., Sales, J., Homs, N. (1998). Bimetallic silica-supported catalysts based on Ni-Sn, Pd-Sn, and Pt-Sn as materials in the CO oxidation reaction. Chem. Mater. 10: 1333-1342
  15. Santori, G.F., Casella, M.L., Ferretti, O.A. (2002). Hydrogenation of carbonyl compounds using tin-modified platinum-based catalysts prepared via surface organometallic chemistry on metals (SOMC/M). J. Molec. Catal. A. 186: 223-239
  16. Merlo, B., Vetere, V., Ruggera, J.F., Casella, M.L. (2009). Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catal. Commun. 10: 1665-1669
  17. Vetere, V., Merlo, A.B., Ruggera, J.F., Casella, M.L. (2010). Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J. Braz. Chem. Soc. 21: 914-920
  18. Delbecq, F., and Sautet, P. (1995). Competitive C=C and C=O adsorption of a,b-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: A theoretical approach. J. Catal. 152: 217-236
  19. Delbecq, F., and Sautet, P. (2003). Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. J. Catal. 220: 115-126
  20. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Catal. Lett. 41(8): 769-771
  21. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catal. Sci. Technol. 2: 2139-2145
  22. Rodiansono, R., Shimazu, S. (2013). Effective production of sorbitol and mannitol from sug-ars catalyzed by Ni nanoparticles supported on aluminium hydroxide. Bull. Chem. React. Eng. Catal. 8(1): 40-46
  23. Petro, J., Bóta, A., László, K., Beyer, H., Ká-lmán, E., Dódony, I. (2000). A new alumina-supported, not pyrophoric Raney-type Ni-catalyst. Appl. Catal. A: Gen. 190: 73-86
  24. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., Characterization of porous sol-ids and powders: surface area, pore size and density; Kluwer Academic Publishers, Nether-lands, 2004, Chapter 8
  25. Bartholomew, C.H., Pannel, R.B., Butler J.L. (1980). Support and crystallite size effects in CO hydrogenation on nickel. J. Catal. 65: 335-347
  26. Bartholomew, C.H., Pannel, R.B. (1980). The stoichiometry of hydrogen and carbon monox-ide chemisorption on alumina- and silica-supported nickel. J. Catal. 65: 390-401
  27. Powder diffraction file, JCPDS-International center for diffraction data (ICDD), 1991
  28. Vaidya, S.D., Thakkar, N.V. (2001). Study of phase transformations during hydration of rho alumina by combined loss on ignition and x-ray diffraction technique. J. Phys. Chem. 62: 977-986
  29. Wittmann, Z.S., Kantor, E., Belafi, K., Peterfy, L., Farkas, L.P. (1992). Phase composi-tion analysis of hydrous aluminium oxides by thermal analysis and infrared spectrometry. Talanta. 39: 1583-1586
  30. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijke-boer, A. (2001). Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. J. Cryst. Growth 233: 567-582
  31. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijke-boer, A. (2002). Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Appl. Surf. Sci. 187: 218-234
  32. Lefevre, G., Fedoroff, M. (2002). Synthesis of bayerite (h-Al(OH)3) microrods by neutralization of aluminate ions at constant pH. Mater. Lett. 56: 978-983

Last update: 2021-07-28 13:55:06

No citation recorded.

Last update: 2021-07-28 13:55:06

  1. Selective hydrogenation of dodecanoic acid to dodecane-1-ol catalyzed by supported bimetallic Ni-Sn alloy

    Rodiansono R.. Bulletin of Chemical Reaction Engineering & Catalysis, 13 , 2018. doi: 10.9767/bcrec.13.2.1790.311-319
  2. Selective hydrogenation of biomass-derived furfural over supported Ni3Sn2 alloy: Role of supports

    Rodiansono R.. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1), 2016. doi: 10.9767/bcrec.11.1.393.1-9
  3. Catalytic hydrogenation of levulinic acid in water into γ-valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts

    Rodiansono R.. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2), 2015. doi: 10.9767/bcrec.10.2.8284.192-200
  4. Heterogeneous Catalytic Upgrading of Biofuranic Aldehydes to Alcohols

    Long J.. Frontiers in Chemistry, 7 , 2019. doi: 10.3389/fchem.2019.00529
  5. Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification

    Zienkiewicz-Machnik M.. Catalysis Today, 127 , 2018. doi: 10.1016/j.cattod.2017.08.062
  6. The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol

    O'Driscoll. Catalysis Today, 127 , 2017. doi: 10.1016/j.cattod.2016.06.013
  7. Synthesis of Γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems

    Yu Z.. Renewable and Sustainable Energy Reviews, 112 , 2019. doi: 10.1016/j.rser.2019.05.039
  8. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural

    Chen S.. Chemical Reviews, 118 (22), 2018. doi: 10.1021/acs.chemrev.8b00134
  9. An Investigation of the Effect of the Addition of Tin to 5 %Pd/TiO2 for the Hydrogenation of Furfuryl Alcohol

    King G.M.. ChemCatChem, 7 (14), 2015. doi: 10.1002/cctc.201500242
  10. Furfural as a renewable chemical platform for furfuryl alcohol production

    Long J.. Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals, 2019. doi: 10.1016/B978-0-444-64307-0.00011-1
  11. Efficient hydrogenation of levulinic acid in water using a supported Ni-Sn alloy on aluminium hydroxide catalysts

    Rodiansono . Catalysis Science and Technology, 6 (9), 2016. doi: 10.1039/c5cy01731a
  12. Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural

    Rodiansono . Molecular Catalysis, 127 , 2018. doi: 10.1016/j.mcat.2017.11.004
  13. Recent progress in the direct synthesis of γ-valerolactone from biomass-derived sugars catalyzed by RANEY® Ni-Sn alloy supported on aluminium hydroxide

    Rodiansono . Catalysis Science and Technology, 10 (22), 2020. doi: 10.1039/d0cy01356k
  14. One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture

    Rodiansono . Green Chemistry, 21 (9), 2019. doi: 10.1039/c8gc03938k
  15. Biomass-derived platform molecules upgrading through catalytic processes: Yielding chemicals and fuels

    Dumeignil F.. Journal of the Japan Petroleum Institute, 58 (5), 2015. doi: 10.1627/jpi.58.257