Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

Rodiansono Rodiansono -  Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Takayoshi Hara -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
Nobuyuki Ichikuni -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
*Shogo Shimazu -  Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
Received: 28 Sep 2013; Published: 12 Mar 2014.
Open Access
Citation Format:
Cover Image
Article Info
Section: The 3rd ITB Catalysis Symposium 2013
Language: EN
Full Text:
Statistics: 826 511
Abstract

A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH) and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH). H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reserved

Received: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013

[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 53-59. (doi:10.9767/bcrec.9.1.5529.53-59)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59]

Keywords
nanoporous Ni-Sn alloy; chemoselective hydrogenation; furfural; furfuryl alcohol

Article Metrics:

  1. Falbe, J., Bahrmann, H., Lipps, W., Meyer, D., in Ullmanns encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. 2005. Vol. 11, pp. 21.
  2. Fujita, S.I., Sano, Y., Bhanage, B.M., Arai, M. (2004). Supported liquid-phase catalysts containing ruthenium complexes for selective hydrogenation of α, β-unsaturated aldehyde: importance of interfaces between liquid film, solvent, and support for the control of product selectivity. J. Catal. 225: 95-104.
  3. Claus, P. (1998). Selective hydrogenation of a,b-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top. Catal. 5:51-62.
  4. Gallezot, P., Richard, D. (1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catal. Rev. Sci. Eng. 40: 81-126.
  5. Mäki-Arvela, P., Hajek, J., Salmi, T., Yu. Murzin, D. (2005). Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A. 292: 1-49.
  6. Bianchini, C., Farnetti, E., Graziani, M., Nar-din, G., Vacca, A., Zanobini F. (1990). Electron-rich iridium complexes with mixed-donor polydentate ligands: chemoselective catalysts in hydrogen-transfer reduction of a,b-unsaturated ketones. J. Am. Chem. Soc. 112: 9190-9197.
  7. Kaspar, J., Graziani, M., Escobar, G.P., Trovarelli, A. (1992). Chemoselective hydrogenation of unsaturated carbonyl compounds over groups 8 and 9 titania-supported metal catalysts. J. Molec. Catal. 72: 243-251.
  8. De bruyn, M., Coman, S., Bota, R., Parvulescu, V.I., De Vos, D.E., Jacobs, P.A., (2003). Chemoselective reduction of complex a,b-unsaturated ketones to allylic alcohols over Ir-metal particles on b-zeolites. Angew. Chem. Int. Ed. 42: 5333-5336.
  9. Sachtler, W.M.H., Van Santen, R.A. (1977). Surface composition and selectivity of alloy catalysts. Adv. Catal. 26: 69-119.
  10. Dandekar, A., Vannice, M.A. (1999). Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts. J. Catal. 183: 344-354.
  11. Clarke, J.K.A. (1975). Selectivity in catalysis by alloys. Chem. Rev. 75: 291-305.
  12. Ferrando, R., Jellinek, J., Johnston, R.L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108: 846-910.
  13. Jiang, H.L., Xu, Q. (2011). Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 21: 13705-13725.
  14. Arana, J., Ramirez de la Piscina, P., Llorca, L., Sales, J., Homs, N. (1998). Bimetallic silica-supported catalysts based on Ni-Sn, Pd-Sn, and Pt-Sn as materials in the CO oxidation reaction. Chem. Mater. 10: 1333-1342.
  15. Santori, G.F., Casella, M.L., Ferretti, O.A. (2002). Hydrogenation of carbonyl compounds using tin-modified platinum-based catalysts prepared via surface organometallic chemistry on metals (SOMC/M). J. Molec. Catal. A. 186: 223-239.
  16. Merlo, B., Vetere, V., Ruggera, J.F., Casella, M.L. (2009). Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catal. Commun. 10: 1665-1669.
  17. Vetere, V., Merlo, A.B., Ruggera, J.F., Casella, M.L. (2010). Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J. Braz. Chem. Soc. 21: 914-920.
  18. Delbecq, F., and Sautet, P. (1995). Competitive C=C and C=O adsorption of a,b-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: A theoretical approach. J. Catal. 152: 217-236.
  19. Delbecq, F., and Sautet, P. (2003). Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. J. Catal. 220: 115-126.
  20. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Catal. Lett. 41(8): 769-771.
  21. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catal. Sci. Technol. 2: 2139-2145.
  22. Rodiansono, R., Shimazu, S. (2013). Effective production of sorbitol and mannitol from sug-ars catalyzed by Ni nanoparticles supported on aluminium hydroxide. Bull. Chem. React. Eng. Catal. 8(1): 40-46.
  23. Petro, J., Bóta, A., László, K., Beyer, H., Ká-lmán, E., Dódony, I. (2000). A new alumina-supported, not pyrophoric Raney-type Ni-catalyst. Appl. Catal. A: Gen. 190: 73-86.
  24. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., Characterization of porous sol-ids and powders: surface area, pore size and density; Kluwer Academic Publishers, Nether-lands, 2004, Chapter 8.
  25. Bartholomew, C.H., Pannel, R.B., Butler J.L. (1980). Support and crystallite size effects in CO hydrogenation on nickel. J. Catal. 65: 335-347.
  26. Bartholomew, C.H., Pannel, R.B. (1980). The stoichiometry of hydrogen and carbon monox-ide chemisorption on alumina- and silica-supported nickel. J. Catal. 65: 390-401.
  27. Powder diffraction file, JCPDS-International center for diffraction data (ICDD), 1991.
  28. Vaidya, S.D., Thakkar, N.V. (2001). Study of phase transformations during hydration of rho alumina by combined loss on ignition and x-ray diffraction technique. J. Phys. Chem. 62: 977-986.
  29. Wittmann, Z.S., Kantor, E., Belafi, K., Peterfy, L., Farkas, L.P. (1992). Phase composi-tion analysis of hydrous aluminium oxides by thermal analysis and infrared spectrometry. Talanta. 39: 1583-1586.
  30. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijke-boer, A. (2001). Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. J. Cryst. Growth 233: 567-582.
  31. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijke-boer, A. (2002). Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Appl. Surf. Sci. 187: 218-234.
  32. Lefevre, G., Fedoroff, M. (2002). Synthesis of bayerite (h-Al(OH)3) microrods by neutralization of aluminate ions at constant pH. Mater. Lett. 56: 978-983