The Role of Ti and Lewis Acidity in Manganese Oxide Octahedral Molecular Sieves Impregnated with Titanium in Oxidation Reactions

Fitri Hayati  -  Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Sheela Chandren  -  Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Halimaton Hamdan  -  Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
*Hadi Nur  -  (SCOPUS h-index: 14); Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Received: 18 Oct 2013; Published: 12 Mar 2014.
Open Access
Citation Format:
graphical abstract 5603

Octahedral manganese oxide molecular sieves (OMS-2) was prepared by precipitation method and modified by impregnation of titanium with different titanium/manganese (Ti/Mn) ratio. It was also discovered that Ti/Mn ratio of less than 0.5 still retains the original pure cryptomelane structure of OMS-2. However, for sample with Ti/Mn ratio of more than 0.5, some rutile phases of titania (TiO2) can be detected together with the cryptomelane phase. Lewis acid sites were also observed in the titanium modified OMS-2 (Ti-OMS-2). Ti-OMS-2 was then used as catalysts for the oxidation of cyclohexane, cyclohexene and styrene, where Ti-OMS-2 with Ti/Mn ratio of 0.67 was most active in all three of the oxidation reactions as compared to TiO2 and OMS-2. The results suggest that both titanium sites in framework and non-framework and the Lewis acidity created by the impregnation of Ti, increased the activity of OMS-2 in oxidation reactions. © 2014 BCREC UNDIP. All rights reserved

Received: 18th October 2013; Revised: 4th January 2014; Accepted: 4th January 2014

[How to Cite: Hayati, F., Chandren, S., Hamdan, H., Nur, H. (2014). The Role of Ti and Lewis Acidity in Manganese Oxide Octahedral Molecular Sieves Impregnated with Titanium in Oxidation Reactions. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 28-38. (doi:10.9767/bcrec.9.1.5603.28-38)]

[Permalink/DOI: ]


Keywords: Titanium-impregnated manganese oxide molecular sieves; oxidation; Lewis acidity; framework and non-framework Ti

Article Metrics:

  1. Suib, S.L. (1996). Synthesis, Characterization and Catalysis with Microporous Ferrierites, Octahedral Molecular Sieves, and Layered Materials. In S. I. W. H. Chon and S. E. Park (Eds.), Studies in Surface Science and Catalysis. 102: 47-74
  2. Makwana, V.D., Garces, L.J., Liu, J., Cai, J., Son, Y.-C., Suib, S.L. (2003). Selective Oxidation of Alcohols using Octahedral Molecular Sieves: Influence of Synthesis Method and Property–Activity Relations. Catalysis Today, 85(2-4): 225-233
  3. Makwana, V.D., Son, Y.C., Howell, A R., Suib, S. L. (2002). The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using
  4. OMS-2 Catalyst: A Kinetic and Isotope-Labeling Study. Journal of Catalysis, 210(1): 46-52
  5. Rebello, J.S., Samant, P.V., Figueiredo, J.L., Fernandes, J.B. (2006). Enhanced Electrocat-alytic Activity of Carbon-Supported MnOx/Ru Catalysts for Methanol Oxidation in Fuel Cells. Journal of Power Sources, 153(1): 36-40
  6. Luo, J., Zhang, Q., Huang, A., Suib, S.L. (2000). Total Oxidation of Volatile Organic Compounds with Hydrophobic Cryptomelane-type Octahedral Molecular Sieves. Microporous and Mesoporous Materials, 35–36(0): 209-217
  7. Ghosh, R., Shen, X., Villegas, J.C., Ding, Y., Malinger, K., Suib, S.L. (2006). Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation. Journal of Physical Chemistry B, 110(14): 7592-7599
  8. Ghosh, R., Son, Y.C., Makwana, V.D., Suib, S.L. (2004). Liquid-Phase Epoxidation of Olefins by Manganese Oxide Octahedral Molecular sieves. Journal of Catalysis, 224(2): 288-296
  9. Chen, X., Shen, Y.F., Suib, S.L., O'Young, C.L. (2002). Characterization of Manganese Oxide Octahedral Molecular Sieve (M−OMS-2) Materials with Different Metal Cation Dopants. Chemistry of Materials, 14(2): 940-948
  10. Suib, S.L. (1998). Microporous Manganese Oxides. Current Opinion in Solid State and Materials Science, 3(1): 63-70
  11. Krishnan, V.V., Suib, S.L. (1999). Oxidative Dehydrogenation of 1-Butene over Manganese Oxide Octahedral Molecular Sieves. Journal of Catalysis, 184(2): 305-315
  12. Liu, J., Son, Y.-C., Cai, J., Shen, X., Suib, S.L., Aindow, M. (2003). Size Control, Metal Substitution, and Catalytic Application of Cryptomelane Nanomaterials Prepared Using Cross-linking Reagents. Chemistry of Materials, 16(2): 276-285
  13. Segal, S.R., Suib, S.L., Foland, L. (1997). Decomposition of Pinacyanol Chloride Dye Using Several Manganese Oxide Catalysts. Chemistry of Materials, 9(11): 2526-2532
  14. Zhou, H., Wang, J.Y., Chen, X., O'Young, C.L., Suib, S.L. (1998). Studies of Oxidative Dehydrogenation of Ethanol over Manganese Oxide Octahedral Molecular Sieve Catalysts. Microporous and Mesoporous Materials, 21(4-6): 315-324
  15. Arends, I.W.C.E., Sheldon, R.A. (2001). Activities and Stabilities of Heterogeneous Catalysts in Selective Liquid Phase Oxidations: Recent Developments. Applied Catalysis A: General, 212(1–2): 175-187
  16. Sheldon, R.A., Arends, I.W C.E., Lempers, H.E.B. (1998). Liquid Phase Oxidation at Metal ions and Complexes in Constrained Environments. Catalysis Today, 41(4): 387-407
  17. He, J., Xu, W.-p., Evans, D. G., Duan, X., Li, C.-Y. (2001). Role of Pore Size and Surface Properties of Ti-MCM-41 Catalysts in the Hydroxylation of Aromatics in the Liquid Phase. Microporous and Mesoporous Materials, 44–45(0): 581-586
  18. Taramasso, M., Perego, G., Notari, B. (1983). Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. U.S. Patent 4,410,501
  19. Prasetyoko, D., Ramli, Z., Endud, S., & Nur, H. (2005). Enhancement of Catalytic Activity of Titanosilicalite-1-Sulfated Zirconia Combination towards Epoxidation of 1-Octene with Aqueous Hydrogen Peroxide. Reaction Kinetics and Catalysis Letters, 86(1): 83-89
  20. Arata, K., Matsuhashi, H., Hino, M., Nakamura, H. (2003). Synthesis of Solid Superacids and their Activities for Reactions of Alkanes. Catalysis Today, 81(1): 17-30
  21. De Guzman, R.N., Shen, Y.F., Shaw, B.R., Suib, S.L., O'Young, C.L. (1993). Role of Cyclic Voltammetry in Characterizing Solids: Natural and Synthetic Manganese Oxide Octahedral Molecular Sieves. Chemistry of Materials, 5(10): 1395-1400
  22. Nur, H., Hayati, F., Hamdan, H. (2007). On the Location of Different Titanium Sites in Ti–OMS-2 and their Catalytic Role in Oxidation of Styrene. Catalysis Communications, 8(12): 2007-2011
  23. Database of Joint Committee for Powder Diffraction Studies (JPCDS) PDF# 29,102
  24. O'Young, C.-L., Sawicki, R.A., Suib, S.L. (1997). Micropore Size Distribution of Octahedral Molecular Sieves (OMS). Microporous
  25. Materials, 11(1–2): 1-8
  26. Cai, J., Liu, J., Willis, W.S., Suib, S.L. (2001). Framework Doping of Iron in Tunnel Structure Cryptomelane. Chemistry of Materials, 13(7): 2413-2422
  27. Mayer, J.T., Diebold, U., Madey, T.E., Garfunkel, E. (1995). Titanium and Reduced Titania Overlayers on Titanium Dioxide(110). Journal of Electron Spectroscopy and Related Phenomena, 73(1): 1-11
  28. Zou, Z.-Q., Meng, M., Guo, L.-H., & Zha, Y.-Q. (2009). Synthesis and Characterization of CuO/Ce1−xTixO2 Catalysts used for Low-temperature CO Oxidation. Journal of Hazardous Materials, 163(2-3): 835-842
  29. Schuchardt, U., Cardoso, D., Sercheli, R., Pereira, R., da Cruz, R.S., Guerreiro, M.C., Pires, E.L. (2001). Cyclohexane Oxidation Continues to be a Challenge. Applied Catalysis A: General, 211(1): 1-17
  30. Larsen, R.G., Saladino, A.C., Hunt, T.A., Mann, J.E., Xu, M., Grassian, V.H., Larsen, S.C. (2001). A Kinetic Study of the Thermal and Photochemical Partial Oxidation of Cyclohexane with Molecular Oxygen in Zeolite Y. Journal of Catalysis, 204(2): 440-449
  31. Tian, P., Liu, Z., Wu, Z., Xu, L., He, Y. (2004). Characterization of Metal-containing Molecu-lar Sieves and their Catalytic Properties in the Selective Oxidation of Cyclohexane. Catalysis Today, 93–95: 735-742
  32. Sawatari, N., Yokota, T., Sakaguchi, S., Ishii, Y. (2001). Alkane Oxidation with Air Catalyzed by Lipophilic N-Hydroxyphthalimides without Any Solvent. The Journal of Organic Chemistry, 66(23): 7889-7891
  33. Wu, P., Xiong, Z., Loh, K. P., & Zhao, X. S. (2011). Selective oxidation of cyclohexane over gold nanoparticles supported on mesoporous silica prepared in the presence of thioether functionality. Catalysis Science & Technology, 1(2), 285-294
  34. Salavati-Niasari, M., Banitaba, S.H. (2003). Alumina-Supported Mn(II), Co(II), Ni(II) and Cu(II) bis(2-hydroxyanil)acetylacetone Com-plexes as Catalysts for the Oxidation of Cyclo-hexene with tert-butylhydroperoxide. Journal of Molecular Catalysis A: Chemical, 201(1–2): 43-54
  35. Salavati-Niasari, M. (2005). Nanoscale Micro-reactor-Encapsulation 14-membered Nickel(II) Hexamethyl Tetraaza: Synthesis, Char-acterization and Catalytic Activity. Journal of Molecular Catalysis A: Chemical, 229(1–2): 159-164
  36. Salavati-Niasari, M., Salemi, P., Davar, F. (2005). Oxidation of Cyclohexene with tert-butylhydroperoxide and Hydrogen Peroxide Catalysted by Cu(II), Ni(II), Co(II) and Mn(II) Complexes of N,N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, Supported on Alumina. Journal of Molecular Catalysis A: Chemical, 238(1–2): 215-222
  37. Fujihara, K., Izumi, S., Ohno, T., Matsumura, M. (2000). Time-resolved Photoluminescence of Particulate TiO2 Photocatalysts Suspended in Aqueous Solutions. Journal of Photochemistry and Photobiology A: Chemistry, 132(1–2): 99-104
  38. Corma, A., García, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions: From Ho-mogeneous to Heterogeneous Systems. Chemical Reviews, 102(10): 3837-3892

Last update: 2021-02-26 08:52:31

No citation recorded.

Last update: 2021-02-26 08:52:32

  1. Catalytic properties of alumina-supported ruthenium, platinum, and cobalt nanoparticles towards the oxidation of cyclohexane to cyclohexanol and cyclohexanone

    Rekkab-Hammoumraoui I.. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1), 2018. doi: 10.9767/bcrec.13.1.1226.24-35
  2. Synthesis of bimetallic Zr(Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis

    Rasero-Almansa A.. RSC Advances, 6 (108), 2016. doi: 10.1039/c6ra23143h