Catalytic Activities of Fe3+- and Zn2+-Natural Zeolite on the Direct Cyclisation-Acetylation of (R)-(+)-Citronellal

*Edy Cahyono  -  Department of Chemistry, Universitas Negeri Semarang, Sekaran, Gunungpati, Semarang 50229,, Indonesia
Muchalal Muchalal  -  Department of Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta 55281,, Indonesia
Triyono Triyono  -  Department of Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta 55281,, Indonesia
Harno Dwi Pranowo  -  Department of Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta 55281,, Indonesia
Received: 18 Dec 2013; Published: 1 Aug 2014.
Open Access
Citation Format:
Cover Image

Characterisation and catalytic ativities investigation of modified natural zeolite on cyclisation acetylation reaction of (R)-(+)-citronellal was performed. The experimental work involved isolation of (R)-(+)-citronellal from Java Citronella oil (Cymbopogon winterianus) by vacuum fractional distillation, determination of its enantiomer, preparation and characterisation of different catalysts i.e. H-natural zeolite (H-Za), Fe3+-natural zeolite (Fe3+-Za), and Zn2+-natural zeolite (Zn2+-Za), followed by examination of catalytic activity and selectivity. Isolated citronellal contained 88.21% ee of (R)-(+)-citronellal. The main products of cyclisation-acetylation of (R)-(+)-citronellal was IPA (isopulegyl acetate) and NIPA (neo-isopulegyl acetate). Although the highest yield of IPA and NIPA was obtained by Fe3+-Za catalyst (78.69%) at 80oC and 120 min, the stereoselectivity of Fe3+-Za slightly lower than that of Zn2+-Za. Structure elucidation of citronellal and products was carried out by means of GC and GC-MS. Lewis acidity plays the role of acetyl ionic formation from acetic anhydride. The Activity and stereoselectivity of catalysts depended on Lewis acidity and cation distribution on the catalyst surface. © 2014 BCREC UNDIP. All rights reserved

Received: 18th December 2013; Revised: 9th April 2014; Accepted: 17th April 2014

[ How to Cite: Cahyono, E., Muchalal, M., Triyono, T., Pranowo, H.D. (2014). Catalytic Activities of Fe3+- and Zn2+-Natural Zeolite on the Direct Cyclisation-Acetylation of (R)-(+)-Citronellal. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2): 128-135. (doi:10.9767/bcrec.9.2.5936.128-135) ]

[ Permalink/DOI: ]


Keywords: (R)-(+)-citronellal; isopulegyl acetate; Fe3+ and Zn2+-natural zeolite

Article Metrics:

  1. Nhu-Trang, T.T, Casabianca, H., Greiner-Loustalot, M.F. (2006). Authenticity Control of Essential Oils Containing Citronellal And Citral by Chiral and Stable-Isotope Gas-Chromatographic Analysis. Anal. Bioanal. Chem., 386: 2141-2152.
  2. Arras, J., Steffan, M., Shayeghi, Y. and Claus, P. (2008). The Promoting Effect of a Dicyanamide Based Ionic Liquid in The Selec-tive Hydrogenation of Citral. Chem. Commun., 34: 4058-4060.
  3. Alvaro, M., Corma, A, Das, D., Fornés, F., García, H. (2005). “Nafion”-Functionalized Mesoporous MCM-41 Silica Shows High Ac-tivity and Selectivity For Carboxylic Acid Esterification and Friedel–Crafts Acylation Reactions. J. Catal., 23: 48-55.
  4. Sheldon, R.A. (1997). Catalysis and Pollution Prevention . Chem Ind (London) 12-15.
  5. Sheldon, R.A., Bekkum, H.V. (2000), Fine Chemicals through Heterogeneous Catalysis, Wiley VCH, Weinheim.
  6. Gadekar, L. S., Katkar, S. S., Vidhate, K. N., Arbad, B. R., Lande, M.K. (2008). Modifica-tion, Characterization and Catalytic Potency of Modified Natural Zeolite for Knoevenagel Condensation Reaction. Bull. Catal. Soc. India. 7: 76-83.
  7. Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013). Activities of Heteroge-neous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bull. Chem. React. Eng. Catal. 8(1): 14-33. [" target="_blank">CrossRef]
  8. Chuah, G.K., Liu, S.H., Jaenicke, S., Harrison, L.J. (2001). Cyclization Citronellal to Isopulegol Catalyzed by Hydrous Zirconia and Other Solid Acids. J. Catal. 200: 352-359
  9. Yongshong, Z., Yuntong, N., Jaenicke, S., Chuah, G.K. (2004). Cyclisation of Citronellal over Zirconium Zeolite beta - a Highly Diastereoselective Catalyst to (±)-Isopulegol. J. Catal. 229: 404-413.
  10. Cahyono, E., Pranowo, H.D., Muchalal, M., Triyono, T. (2010). Redox reaction in The Cy-lation Cyclisation-Aromatisation of (R)-(+)-Citronellal with FeCl3/Acetic anhydride. Eksakta Jurnal Ilmu-ilmu MIPA, 2: 79-85
  11. Delannay, F. (1984). Characterization of heterogeneous catalysis; Marcel Dekker: New York.
  12. Maria, C., Abello, M.C., Velasco, V.P., Go-mez, M.F., Rivarola, J.B. (1997). Temperature-Programmed Desorption of NH3 on Na-Y Zeolite. Langmuir. 13: 2596-2599
  13. Cahyono, E. (2012). Acidity Measurement of Modified Natural Zeolite with NH3-TPD Method, Proceedings, National Seminar on Chemistry and Chemistry Education, Unsoed-Unnes-Undip-UNS-HKI.
  14. Cahyono, E., Pranowo, H.D., Muchalal, M., Triyono, T. (2013). Analysis Of The Enantio-mers Ratio of Citronellal From Indonesian Ci-tronella Oil Using Enantioselective Gas Chromatography. Malaysian Journal of Fundamental and Applied Sciences. 9(2): 62-66.
  15. Ostroski, I.C., Barros, M.A.S.D., Silva, E.A., Dantas, J.H., Arroyo, P.A., Lima, O.C.M. (2009). A Comparative Study For The Ion Exchange of Fe(III) and Zn(II) On Zeolite NaY. J. Haz. Mat. 16: 1404-1412.
  16. Hernáandez, M.A., Corona, L., Rojas, F. (2000). Adsorption Characteristics of Natural Erionite, Clinoptilolite and Mordenite Zeolites from Mexico. Adsorption. 6(1): 33-45
  17. Xi, H., Li, Z., Zhang, H. Li, X., Hu, X. (2003). Estimation of Activation Energy For Desorption of Low-Volatility Dioxins on Zeolites By TPD Technique. Sep. Purif. Technol. 31: 41-45.
  18. Mockovciakova, A., Matik, M., Zuzana Orolınova, Z, Hudec, P., Kmecova, E. (2008). Structural characteristics of modified natural zeolite. J. Porous Mater. 15: 559-564
  19. Guisnet, M., Ayrault, P., Coutanceau, C., Alvarez, M.F., Datka, J. (1997). Acid Properties of Dealuminated Beta Zeolites Studied by Irspectroscopy. J. Chem. Soc. Faraday Trans. 93: 1661-1665.
  20. Sharma, P., Rajaram, P., Thomar, R. (2008). Synthesis And Morphological Studies of Nanocrystalline MOR Type Zeolite Material. J. Colloid Interf. Sci. 325: 547-557.
  21. Freese, U., Heinrich F., Roessner, F. (1999). Acylation of Aromatic Compounds on H-Beta zeolites, Catal. Today. 49(1-3): 237-244.
  22. Smith, K., Zenhua, Z., Hodgson, P.K.G. (1998). Synthesis of Aromatic Ketones by Acylation of Aryl Ethers with Carboxylic Anhy-drides in the Presence of Zeolite H-Β (H-BEA) in the Absence of Solvent. J. Mol. Cat. A-Chem. 134: 121-128.
  23. Cahyono, E., Muchalal, M., Triyono, T., Pranowo, H.D. (2010). Cyclisation-Acetylation Kinetic Of (R)-(+)-Citronellal By Zn2+–Natural Zeolite as Solid Solvent Catalyst, Indo. J. Chem. 10(2): 189-194.
  24. Liu, Y., Lotero, E., Goodwin Jr., J.G. (2006). Effect of Carbon Chain Length on Esterification of Carboxylic Acids with Methanol Using Acid Catalysis. J. Catal. 243: 221-228.

No citation recorded.