One-pot Synthesis of Pt Catalysts Supported on Al-modified TiO2

Rebecca Olsen  -  Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602,, United States
Calvin Bartholomew  -  Department of Chemical Engineering, Brigham Young University, Provo, UT 84602,, United States
Ben Enfield  -  Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602,, United States
*Brian F. Woodfield  -  Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602,, United States
Received: 20 Apr 2014; Published: 28 Oct 2014.
Open Access
Citation Format:
Cover Image
Abstract

A facile, industrially viable, one-pot synthesis of 0.5-8 wt% Pt supported on 22 mol% Al-modified ana-tase with high surface area and thermal stability is presented. Four pathways were studied to deter-mine the effects of support properties on catalyst dispersion, and the highest dispersions were observed for high surface area materials containing 5-coordinate anatase. Systematic study of preparation vari-ables shows that low drying temperatures, slow calcination ramp rates, and slow reduction ramp rates further increased Pt dispersion and resulted in a more uniform Pt size distribution. Pt dispersions as high as 54% have been obtained using the one-pot method and 59% for Pt catalysts synthesized by dry impregnation. Statistically designed studies are needed to more completely determine the effects of synthesis variables and to optimize the dispersion and reduction of Pt supported on Al-modified ana-tase. Results presented in this paper show that this one-pot method and dry impregnation method us-ing our Al-modified anatase support are promising syntheses of highly dispersed Pt supported on stabi-lized titania. Our results demonstrate that the alumina-stabilized anatase support is superior to other anatase supports for (1) obtaining high Pt dispersions, i.e. more efficiently utilizing this expensive pre-cious metal, and (2) processes in which thermal stability is important due to its constant phase and pore structures at high temperatures. © 2014 BCREC UNDIP. All rights reserved

Received: 20th April 2014; Revised: 14th May 2014; Accepted: 10th June 2014

How to Cite: Olsen, R.E., Bartholomew,C.H., Enfield, D.B., Woodfield, B.F. (2014). One-pot Synthesis of Pt Catalysts Supported on Al-modified TiO2. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3): 156-167. (doi:10.9767/bcrec.9.3.6734.156-167)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6734.156-167

Keywords: anatase; high surface area; SMSI effect; supported Pt-catalyst; one-pot synthesis

Article Metrics:

  1. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B. (1993). Low-Temperature Oxidation of Carbon Monoxide Over Gold Supported on Titanium Dioxide, α-Ferric Oxide, and Cobalt Tetraoxide. J. Catal., 144 (1): 175-92
  2. Imai, H., Date, M., Tsubota, S. (2008). Preferential Oxidation of CO in H2-Rich Gas at Low Temperatures over Au Nanoparticles Supported on Metal Oxides. Catal. Lett., 124 (1-2): 68-73
  3. Edwards, J. K., Carley, A. F., Herzing, A. A., Kiely, C. J., Hutchings, G. J. (2008). Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Supported Au-Pd Catalysts. Faraday Discuss., 138 (Nanoalloys): 225-239
  4. Kesavan, L., Tiruvalam, R., Ab, R. M. H., bin, S. M. I., Enache, D. I., Jenkins, R. L., Dimitratos, N., Lopez-Sanchez, J. A., Taylor, S. H., Knight, D. W., Kiely, C. J., Hutchings, G. J. (2011). Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science (Washington, DC, U. S.), 331 (6014), 195-199
  5. Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight, D. W., Hutchings, G. J. (2006). Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science (Washington, DC, U. S.), 311 (5759), 362-365
  6. Tahir, S. F., Koh, C. A. (1996). Catalytic Oxidation for Air Pollution Control. Environ. Sci. Pollut. Res. Int., 3 (1): 20-23
  7. Carp, O., Huisman, C. L., Reller, A. (2004). Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem., 32 (1-2): 33-177
  8. Wegener, S. L., Marks, T. J., Stair, P. C. (2011). Design Strategies for the Molecular Level Synthesis of Supported Catalysts. Acc. Chem. Res., 45 (2); 206-214
  9. Regalbuto, J., Editor, Catalyst Preparation: Science and Engineering., (2007). CRC Press LLC: p 474
  10. Panagiotopoulou, P., Kondarides, D. I. (2009). Effects of Alkali Promotion of TiO2 on the Chemisorptive Properties and Water-Gas Shift Activity of Supported Noble Metal Catalysts. J. Catal., 267 (1): 57-66
  11. Pieta, I. S., Epling, W. S., Garcia-Dieguez, M., Luo, J. Y., Larrubia, M. A., Herrera, M. C., Alemany, L. J. (2011). Nanofibrous Pt-Ba Lean NOx Trap Catalyst with Improved Sulfur Resistance and Thermal Durability. Catal. Today, 175 (1): 55-64
  12. Kimura, K., Einaga, H., Teraoka, Y. (2011). Preparation of Highly Dispersed Platinum Catalysts on Various Oxides by Using Polymer-Protected Nanoparticles. Catal. Today, 164 (1): 88-91
  13. Banis, M. N., Sun, S., Meng, X., Zhang, Y., Wang, Z., Li, R., Cai, M., Sham, T.-K., Sun, X. (2013). TiSi2Ox Coated N-Doped Carbon Nanotubes as Pt Catalyst Support for the Oxygen Reduction Reaction in PEMFCs. J. Phys. Chem. C, 117 (30): 15457-15467
  14. Rebrov, E. V., Berenguer-Murcia, A., Johnson, B. F. G., Schouten, J. C. (2008). Gold Supported on Mesoporous Titania Thin Films for Application in Microstructured Reactors in Low-Temperature Water-Gas Shift Reaction. Catal. Today, 138 (3-4): 210-215
  15. Muraza, O., Rebrov, E. V., Berenguer-Murcia, A., de, C. M. H. J. M., Schouten, J. C. (2009). Selectivity Control in Hydrogenation Reactions by Nanoconfinement of Polymetallic Nanoparticles in Mesoporous Thin Films. Appl. Catal., A, 368 (1-2): 87-96
  16. Cao, Y., Zhai, W., Zhang, X., Li, S., Feng, L., Wei, Y. (2012). Mesoporous SiO2-Supported Pt Nanoparticles for Catalytic Application. ISRN Nanomater., 745397, 8 pp
  17. Yacou, C., Ayral, A., Giroir-Fendler, A., Baylet, A., Julbe, A. (2010). Catalytic Membrane Materials With a Hierarchical Porosity and Their Performance in Total Oxidation of Propene. Catal. Today, 156 (3-4): 216-222
  18. Liu, S.-H., Chiang, C.-C., Wu, M.-T., Liu, S.-B. (2010). Electrochemical Activity and Durability of Platinum Nanoparticles Supported on Ordered Mesoporous Carbons for Oxygen Reduction Reaction. Int. J. Hydrogen Energy, 35 (15): 8149-8154
  19. Teoh, W. Y., Maedler, L., Beydoun, D., Pratsinis, S. E., Amal, R. (2005). Direct (One-Step) Synthesis of TiO2 and Pt/TiO2 Nanoparticles for Photocatalytic Mineralization of Sucrose. Chem. Eng. Sci., 60 (21): 5852-5861
  20. Olsen, R. E., Bartholomew, C. H., Huang, B., Simmons, C., Woodfield, B. F. (2014). Synthesis and characterization of pure and stabilized mesoporous anatase titanias. Microporous Mesoporous Mater., 184: 7-14
  21. Woodfield, B. F., Liu, S., Boerio-Goates, J., Liu, Q. (2007). Preparation of Uniform Nanoparticles of Ultra-High Purity Metal Oxides, Mixed Metal Oxides, Metals, and Metal Slloys. WO2007098111A2
  22. Patterson, A. L. (1939). The Scherrer Formula for X-Ray Particle-Size Determination. Phys. Rev., 56: 978-82
  23. Pierce, C. (1953). Computation of Pore Sizes From Physical Adsorption Data. J. Phys. Chem., 57: 149-52
  24. Orr, C., Jr., Dallavalle, J. M. (1959). Fine Particle Measurement-Size, Surface, and Pore Volume. Macmillan Co.: p 353 pp
  25. Liu, H., Zhang, L., Seaton, N. A. (1993). Sorption Hysteresis as a Probe of Pore Structure. Langmuir, 9 (10): 2576-82
  26. Rojas, F., Kornhauser, I., Felipe, C., Esparza, J. M., Cordero, S., Dominguez, A., Riccardo, J. L. (2002). Capillary Condensation in Heterogeneous Mesoporous Networks Consisting of Variable Connectivity and Pore-Size Correlation. Phys. Chem. Chem. Phys., 4 (11): 2346-2355
  27. Niemark, A. V. (1991). Percolation Theory of Capillary Hysteresis Phenomena and Its Application for Characterization of Porous Solids. Stud. Surf. Sci. Catal., 62 (Charact. Porous Solids 2): 67-74
  28. Parlar, M., Yortsos, Y. C. (1988). Percolation Theory of Vapor Adsorption-Desorption Processes in Porous Materials. J. Colloid Interface Sci., 124 (1): 162-76
  29. Huang, B., Bartholomew, C., H., Woodfield, B. F. (2013). Facile Synthesis of Mesoporous Alumina With Tunable Pore Size: Effects of Alcohols in Precursor Formation and Calcination. Microporous Mesoporous Mater., 177: 37-46
  30. Ball, P. C., Evans, R. (1989). Temperature Dependence of Gas Adsorption on a Mesoporous Solid: Capillary Criticality and Hysteresis. Langmuir, 5 (3): 714-23
  31. Neimark, A. V., Ravikovitch, P. I. (2001). Capillary Condensation in MMS and Pore Structure Characterization. Microporous Mesoporous Mater., 44-45: 697-707
  32. Neimark, A. V., Ravikovitch, P. I., Vishnyakov, A. (2000). Adsorption Hysteresis in Nanopores. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 62 (2-A): R1493-R1496
  33. Monson, P. A. (2008). Contact Angles, Pore Condensation, and Hysteresis: Insights from a Simple Molecular Model. Langmuir, 24 (21): 12295-12302
  34. Tauster, S. J., Fung, S. C., Garten, R. L. (1979). Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide. J. Am. Chem. Soc., 100 (1): 170-175
  35. Stevenson, S. A., Dumesic, J. A., Baker, R. T. K., Ruckenstein, E., Editors. (1987). Metal-Support Interactions in Catalysis, Sintering, and Redispersion. Van Nostrand Reinhold Co.: p 315 pp
  36. Baker, R. T. K., Kim, K. S., Emerson, A. B., Dumesic, J. A. (1986). A Study of the Platinum-Titanium Oxide System for the Hydrogenation of Graphite: Ramifications of Strong Metal-Support Interactions. J. Phys. Chem., 90 (5): 860-866
  37. Bonanni, S., Ait-Mansour, K., Brune, H., Harbich, W. (2011). Overcoming the Strong Metal-Support Interaction State: CO Oxidation on TiO2(110)-Supported Pt Nanoclusters. ACS Catal., 1 (4): 385-389
  38. de la Pena O'Shea, V. A., Consuelo, A. G. M., Platero, P. A. E., Campos-Martin, J. M., Fierro, J. L. G. (2011). Direct Evidence of the SMSI Decoration Effect: the Case of Co/TiO2 Catalyst. Chem. Commun. (Cambridge, U. K.), 47 (25): 7131-7133
  39. Pesty, F., Steinrueck, H.-P., Madey, T. E. (1995). Thermal Stability of Pt Films on TiO2(110): Evidence for Encapsulation. Surf. Sci., 339 (1/2): 83-95
  40. Paal, Z., Menon, P. G., Editors. (1988). Hydrogen Effects in Catalysis. Fundamentals and Practical Applications. In: Chem. Ind. (Dekker), 1988, 31. Marcel Dekker, Inc.: p 753 pp
  41. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. (1985). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem., 57 (4): 603-619
  42. Huang, B. B., C., Woodfield, B.F. (2014). Improved Calculations of Pore Size Distribution for Relatively Large, Irregular Slit-Shaped Mesopore Structure. Microporous Mesoporous Mater., 184: 112-121
  43. Chen, L. X., Rajh, T., Wang, Z., Thurnauer, M. C. (1997). XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. J. Phys. Chem. B, 101 (50): 10688-10697
  44. Chen, L. X., Rajh, T., Jager, W., Nedeljkovic, J., Thurnauer, M. C. (1999). X-Ray Absorption Reveals Surface Structure of Titanium Dioxide Nanoparticles. J. Synchrotron Radiat., 6 (3): 445-447
  45. Luca, V., Djajanti, S., Howe, R. F. (1998). Structural and Electronic Properties of Sol-Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. J. Phys. Chem. B, 102 (52): 10650-10657
  46. Yeung, K. L., Maira, A. J., Stolz, J., Hung, E., Ho, N. K.-C., Wei, A. C., Soria, J., Chao, K.-J., Yue, P. L. (2002). Ensemble Effects in Nanostructured TiO2 Used in the Gas-Phase Photooxidation of Trichloroethylene. J. Phys. Chem. B, 106 (18): 4608-4616
  47. Zhang, H., Chen, B., Banfield, J. F., Waychunas, G. A. (2008). Atomic Structure of Nanometer-Sized Amorphous TiO2. Phys. Rev. B: Condens. Matter Mater. Phys., 78 (21): 214106/1-214106/12
  48. Bartholomew, C. H., Farrauto, R. J. (2003). Fundamentals of Industrial Catalytic Processes. John Wiley & Sons: p 700 pp
  49. Peng, J., Wang, S. (2007). Performance and Characterization of Supported Metal Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures. Appl. Catal., B, 73 (3-4): 282-291
  50. Kimura, K., Einaga, H., Teraoka, Y. (2010). Catalytic Properties of Platinum Supported on Titanium Dioxide by Liquid-Phase Adsorption of Colloidal Nanoparticles. Catal. Lett., 139 (1-2): 72-76
  51. Iida, H., Yonezawa, K., Kosaka, M., Igarashi, A. (2009). Low-Temperature Water Gas Shift Reaction Over Pt-Re/TiO2 Catalysts Prepared by a Sub-Critical Drying Method. Catal. Commun., 10 (5): 627-630
  52. Li, Z., Meng, M., You, R., Ding, T., Li, Z. (2012). Superior Performance of Mesoporous TiO2-Al2O3 Supported NSR Catalysts with the Support Synthesized Using Nonionic and Cationic Surfactants as Co-Templates. Catal. Lett., 142 (9): 1067-1074
  53. Karatzas, X., Jansson, K., Gonzalez, A., Dawody, J., Pettersson, L. J. (2011). Autothermal Reforming of Low-Sulfur Diesel Over Bimetallic RhPt Supported on Al2O3, CeO2-ZrO2, SiO2 and TiO2. Appl. Catal., B, 106 (3-4): 476-487

Last update: 2021-03-01 02:05:13

No citation recorded.

Last update: 2021-03-01 02:05:14

No citation recorded.