skip to main content

Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts

Ram Prasad  -  Department of Chemical Engineering and Technology, IIT (BHU), Varanasi-221005, Uttar Pradesh, India
Abhishek Kumar  -  Department of Chemical Engineering and Technology, IIT (BHU), Varanasi-221005, Uttar Pradesh, India
*Anupama Mishra  -  Department of Chemical Engineering and Technology, IIT (BHU), Varanasi-221005, Uttar Pradesh, India

Citation Format:
Cover Image
Abstract

This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions (320-350 oC). Isothermal kinetics data were collected in a mini-semi-batch reactor. Experiments were performed over the best selected catalyst composition La0.7K0.3ZnOy prepared by sol-gel method. Characterization of the catalyst by XRD and FTIR confirmed that La1-xKxZnOy did not exhibit perovskite phase but formed mixed metal oxides. 110 mg of the catalyst-soot mixture in tight contact (10:1 ratio) was taken in order to determine the kinetic model, activation energy and Arrhenius constant of the oxidation reaction under the high air flow rate assuming pseudo first order reaction. The activation energy and Arrhenius constant were found to be 138 kJ/mol and 6.46x1010 min-1, respectively. © 2014 BCREC UNDIP. All rights reserved

Received: 26th April 2014; Revised: 27th May 2014; Accepted: 28th June 2014

How to Cite: Prasad, R., Kumar, A., Mishra, A. (2014). Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 9(3): 192-200. (doi: 10.9767/bcrec.9.3.6773.192-200)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6773.192-200

Fulltext View|Download
Keywords: Soot emissions; mixed metal oxide; Soot oxidation; Isothermal kinetics

Article Metrics:

  1. Mishra, A., Prasad, R. (2014). Preparation and Application of Perovskite Catalysts for Diesel Soot Emissions Control: An Overview. Catalysis Reviews: Science and Engineering, 56(1): 57-81
  2. Stamatelos, A.M. (1997). A review of the effect of particulate traps on the efficiency of vehicle diesel engines. Energy Conversion Management, 38: 83-99
  3. Fino, D. (2007). Diesel emission control: A review of catalytic filters for particulate removal. Science and Technology of Advance Materials, 8: 93-100
  4. Lopez-Fonseca, R., Elizundia, U., Lnda, I., Gutierrez-Ortiz, M.A., Gonzalez-Velasco, J.R. (2005). Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Applied Catalysis: B, 61: 50-158
  5. Van Setten, B.A.A.L., Schouten, J.M., Makkee, M, Moulijn, J.A. (2000). Realistic contact for soot with an oxidation catalyst for laboratory studies. Applied Catalysis: B, 28: 253-257
  6. Darcy, P., Da Costa, P., Mellotte, H., Trichard, J.M., Djega-Mariadassou, G. (2007). Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catalysis Today, 119: 252-256
  7. Stanmore, B.R., Brilhac, J.F., Gilot, P. (2001). the oxidation of soot: a review of experiments, mechanisms and models. Carbon, 39: 2247-2268
  8. Dernaika, B., Uner, D. (2003). A simplified approach to determine the activation energies of uncatalyzed and catalyzed combustion of soot. Applied Catalysis: B, 40: 219-229
  9. Illekova, E., Csomorova, K. (2005). Kinetics of oxidation in various forms of carbon. Journal of Thermal Analysis and Calorimetry, 80: 103-108
  10. Lopez-Fonseca, R., Landa, I., Gutierrez-Ortiz, M.A., Gonzalez-Velasco, J.R. (2005). Non- isothermal analysis of the kinetics of the combustion of carbonaceous materials. Journal of Thermal Analysis and Calorimetry, 80: 65-69
  11. Messerer, A., Niessner, R., Poschl, U. (2006). Comprehensive kinetic characte- rization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: Measurement, Langmuir-Hinshelwood, and Arrhenius parameters. Carbon, 44: 307-324
  12. Ahlstrom, A.F., Odenbrand, C.U.I. (1989). Combustion characteristics of soot deposits from diesel engines. Carbon, 27: 475-483
  13. Du, Z., Sarofim, A.F., Longwell, J.P., Tognotti, L. (1991). in (ed). Lahaye, J., Ehrburger, P. in Control of Carbon Gasification Reactivity, In Fundamental Issues, Kluwer, Dordrecht
  14. Du, Z., Sarofim, A.F., Longwell, J.P., Mims, C.A. (1991). Kinetic measurement and modeling of carbon oxidation. Energy and Fuels, 5: 214-221
  15. Kalogirou, M., Samaras, Z. (2010). Soot oxidation kinetics from TG experiments. Journal of Thermal Analysis and Calorimetry 99: 1005-1010
  16. Castoldi, L., Matarrese, R., Lietti, L., Forzatti, P. (2006). Simultaneous removal of NOx and soot on Pt-Ba/Al2O3 NSR catalysts. Applied Catalysis: B, 64: 25-34
  17. Russo, N., Furfori, S., Fino, D., Saracco, G., Specchia, V. (2008). Lanthanum cobaltite catalysts for diesel soot combustion. Applied Catalysis B: Environmental, 83: 85-95
  18. Wang, H., Zha, Z., Liang, P., Xu, C., Duan, A., Jiang, G., Xu, J., Liu, J. (2008). Highly Active La1-xKxCoO3 Perovskite-type Complex Oxide Catalysts for the Simultaneous Removal of Diesel Soot and Nitrogen Oxides under Loose Contact Conditions. Catalysis Letters, 124: 91-99
  19. Li, Z., Meng, M., Li, Q., Xie, Y., Hu, T., Zhang, J. (2010). Fe-substituted nanometric La0.9K0.1Co1-xFexO3 perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx. Chemical Engineering Journal 164: 98-105
  20. Sánchez Escribano, V., Fernández López, E., Gallardo-Amores, J.M., del Hoyo Martínez, C., Pistarino, C., Panizza, M., Resini, C., Busca, G.A. (2008). Study of a ceria-zirconia-supported manganese oxide catalyst for combustion of Diesel soot particles. Combustion and Flame, 153: 97-104
  21. Dhakad, M., Mitshuhashi, T., Rayalu, S., Doggali, P., Bakardjiva, S., Subrt, J., Fino, D., Haneda, H., Labhsetwar, N. (2008). Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation. Catalysis Today, 132: 188-193
  22. Zhang, H.B., Liu. H.S., Cao, X.J., Li, S.J., Sun, C.C. (2003). Preparation and properties of the aluminum-substituted α-Ni (OH)2. Materials Chemistry and Physics, 79: 37-42
  23. Zhu, H.L., Yang, D.R., Yang, H., Zhu, L.M., Li, D.S., Jin, D.L., Yao, K.H. (2008). Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor. Journal of Nanoparticle Research, 10: 307-312
  24. Levan, T., Che, M., Tatibouet, J.M., Kermarec, M. (1993). Infrared Study of the Formation and Stability of La2O2CO3 during the Oxidative Coupling of Methane on La2O3. Journal of Catalysis, 142: 18-26
  25. Busca, G., Lorenzelli, V. (1982). Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Journal of Materials Chemistry, 7: 89-126
  26. Zou, G., Liu, R., Chen, W., Xu, Z. (2007). Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture. Materials Research Bulletin, 42: 1153-1158
  27. Mu, Q., Wang, Y. (2011). Synthesis, characterization, shape-preserved transformation, and optical properties of La (OH)3, La2O2CO3, and La2O3 nanorods. Journal of Alloys and Compounds 509: 396-401
  28. Fischer, C.H., Muffler, H.J., Bar, M., Fiechter, S., Leupolt, B., Lux-Steiner, M.C. (2002). Ion layer gas reaction (ILGAR) conversion, thermodynamic considerations and related FTIR analyses. Journal of Crystal Growth, 241: 151-158
  29. Vasudevan, S., Lakshmi, J., Sozhan, G. (2013). Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination, 310: 122-129
  30. Levenspiel, O. (1999). Chemical Reaction Engineering, III Edn, John Wiley & Sons. New York, 379-381
  31. Neeft, J.P.A., Nijhuis, T.X., Smakman, E., Makkee, M., Moulijn, J.A. (1997). Kinetics of the oxidation of diesel soot. Fuel, 76(12): 1129-1136
  32. Darcy, P., Da Costa, P., Mellotte, H., Trichard, J.M., Djega-Mariadassou, G. (2007). Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catalysis Today, 119: 252-256
  33. Lopez-Fonseca, R., Elizundia, U., Landa, I., Gutierrez-Ortiz, M.A., Gonzalez-Velasco, J.R. (2005). Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Applied Catalysis B: Environmental, 61: 150-158
  34. Hernandez S, Andrea Blengini G, Russo N, Fino D (2012) Kinetic Study of Diesel Soot Combustion with Perovskite Catalysts. Industrial and Engineering Chemistry Research, 51: 7584-7589

Last update:

No citation recorded.

Last update:

No citation recorded.