skip to main content

Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review

Rahul Antony  -  Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India
M. S. Giri Nandagopal  -  Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India
Nidhin Sreekumar  -  Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India
S. Rangabhashiyam  -  Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India
*N. Selvaraju  -  Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India

Citation Format:
Cover Image
Abstract

Mass transfer is a basic phenomenon behind many processes like reaction, absorption, extraction etc. Mass transfer plays a significant role in microfluidic systems where the chemical / biological process systems are shrinkened down to a micro scale. Micro reactor system, with its high compatibility and performance, gains a wide interest among the researchers in the recent years. Micro structured reac-tors holds advantages over the conventional types in chemical processes. The significance of micro re-actor not limited to its scalability but to energy efficiency, on-site / on-demand production, reliability, safety, highly controlled outputs, etc. Liquid-liquid two phase reaction in a microreactor system is highly demandable when both reactants are liquids or when air medium cannot be suitable. This arti-cle overviews various liquid-liquid flow regimes in a microchannel. Discussions on the hydrodynamics of flow in micro scale are made. Considering the importance of mass transfer in liquid-liquid systems and the advantage of slug regime over other regimes, the article focuses especially on the mass trans-fer between two liquid phases in slug flow and the details of experimental studies carried out in this area. The advantages of slug flow over other flow regimes in micro structured reactor applications are showcased. © 2014 BCREC UNDIP. All rights reserved

Received: 31st May 2014; Revised: 6th August 2014; Accepted: 14th August 2014

How to Cite: Antony, R., Giri Nandagopal, M.S., Sreekumar, N., Rangabhashiyam, S., Selvaraju, N. (2014). Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review. Bulletin of Chemical Reaction Engineering & Catalysis,9(3): 207-223. (doi:10.9767/bcrec.9.3.6977.207-223)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6977.207-223

Fulltext View|Download
Keywords: Micro reactor; liquid-liquid Mass transfer; slug flow dynamics; microfluidics
Funding: National Institute of Technology Calicut, India (Faculty Research Grant Scheme (Grant No: Dean (C&SR) / FRG10-11 / 0102)

Article Metrics:

Article Info
Section: Review Articles
Language : EN
Statistics:
Share:
  1. Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature, 442: 368-373
  2. Burns, J., Ramshaw, C. (1999). Development of a microreactor for chemical production. Chem. Eng. Res. Des, 77: 206-211
  3. Lawal, A. (2009). Microchannel Reactor System for Catalytic Hydrogenation, US Department of Energy
  4. Voloshin, Y., Lawal, A. (2007). Kinetics of hydrogen peroxide synthesis by direct combination of H2 and O2 in a micro-reactor. Catal. Today, 125: 40-47
  5. Ehrfeld, W., Golbig, K., Hessel, V., Lowe, H., Richter, T. (1999). Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind. Eng. Chem. Res, 38: 1075-1082
  6. Kashid, M.N., Kiwi-Minsker, L. (2009). Ind Microstructured reactors for multiphase reactions: state of the art. Ind. Eng. Chem. Res, 48: 6465-6485
  7. Ehrfeld, W., Hessel, V., L¨owe, H. (2000). Microreactors: New technology for modern chemistry. Wiley-VCH Verlag GmbH, Weinheim
  8. Jeong, G. S, Chung, S., Chang-Beom K., Sang-Hoon, L. (2010). Applications of micromixing technology. Analyst, 135: 460–473
  9. Amador, C., Wenn, D., Shaw, J., Gavriilidis, A., Angeli, P., (2008). Design of a mesh microreactor for even flow distribution and narrow residence time distribution. Chem. Eng. J. 135: S259-S269
  10. Su, Y., Zhao, Y., Chen, G., Yuan, Q. (2010). Liquid–liquid two-phase flow and mass transfer characteristics in packed microchannels. Chem. Eng. Sci., 65: 3947-3956
  11. Huang, J., Weinstein, J., Besser, R.S. (2009). Particle loading in a catalyst-trap microreactor: Experiment vs. Simulation. Chem. Eng. J. 155: 388-395
  12. Ziegenbalg, D., Lob, P., Al-Rawashdeh, M., Kralisch, D., Hessel, V., Schonfeld, F. (2010). Use of “smart interfaces” to improve the liquid-sided mass transport in a falling film microreactor. Chem. Eng. Sci. 65: 3557-3566
  13. Fries, D.M., Von Rohr, P.R. (2009). Liquid mixing in gas-liquid two-phase flow by meandering microchannels. Chem. Eng. Sci. 64: 1326-1335
  14. Jovanovic, J. (2011). Liquid-liquid Microreactors for Phase Transfer Catalysis. Eindhoven: Technische, Universiteit Eindhoven, Dissertation. 25-47
  15. Henriksen, T.R., Olsen, J.L., Vesborg, P., Chorkendorff, I. Hansen, O. (2009). Highly sensitive silicon microreactor for catalyst testing. Rev. Sci. Instrum. 80: 124101-124110
  16. Garcia-Egido, E., Spikmans, V., Wong, S.Y.F., Warrington, B.H. (2003). Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab. Chip. 3: 73-76
  17. Fries, D.M., Voitl, T., Von Rohr, P.R. (2008). Liquid extraction of vanillin in rectangular microreactors. Chem. Eng. Technol. 31: 1182-1187
  18. Ahmed-Omer, B., Barrow, D. Wirth, T. (2008) Effect of segmented fluid flow, sonication and phase transfer catalysis on biphasic reactions in capillary microreactors. Chem. Eng. J. 135S: S280-S283
  19. Andersson, H., van der Wijngaart, W., Enoksson, P., Stemme, G. (2000) Micromachined flow-through filter-chamber for chemical reactions on beads. Sens. Actuators B. 67: 203-208
  20. Dummann, G., Quittmann, U., Groschel, L., Agar, D.W., Worz, O., Morgenschweis, K. (2003). The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions. Catal. Today. 79: 433-439
  21. Javier, A., David, J.B. (2005) Controlled microfluidic interfaces. Nature. 437: 648-655
  22. Rebrov, E.V. (2010). Two phase flow regimes in microchannels. Theor. Found. Chem. Eng. 44: 355-367
  23. Serizawa, A., Feng, Z.P., Kawara, Z. (2002). Twophase flow in microchannels. Exp. Therm. Fluid. Sci. 26: 703-714
  24. Jing, T., Xubin, Z., Wangfeng, C., Fumin, W. (2013). Liquid–liquid extraction based on droplet flow in a vertical microchannel. Exp. Therm. Fluid. Sci. 49: 185-192
  25. Xubin, Z., Dan, C., Yan, W., Wangfeng C. (2012). Liquid-Liquid Two-Phase Flow Patterns and Mass Transfer Characteristics in a Circular Microchannel, Adv. Mat. Res. 482-484: 89-94
  26. Zhao, Y.C., Chen, G.W., Yuan, Q. (2006). Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J. 52: 4052-4060
  27. Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M. (2006). Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of breakup. Lab. Chip. 6: 437-446
  28. Xu, J.H., Li, S.W., Tan, J., Luo, G.S. (2008). Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 5: 711-717
  29. De Menech, M., Garstecki, P., Jousse, F., Stone, H.A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595: 141-161
  30. Tsaoulidis, D., Valentina, D., Panagiota, A., Natalia V. P., Kenneth, R.S. (2013). Flow patterns and pressure drop of ionic liquid–water two-phase flows in microchannels. Int. J. Multiphas. Flow. 54: 1-10
  31. Dessimoz, A.L., Cavin, L., Renken, A., Kiwi-Minsker, L. (2008). Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem. Eng. Sci. 63: 4035-4044
  32. Kashid, M.N., Kiwi-Minsker, L. (2011). Quantitative prediction of flow patterns in liquid–liquid flow in micro-capillaries, Chem. Eng. Prog. 50: 972-978
  33. Dreyfus, R., Tabeling, P., Willaime, H. (2003). Ordered and disordered patterns in two-phase flows in microchannels. Phys. Rev. 90: 144505-1445054
  34. Hooman, F., Masahiro, K. (2011). Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics. Int. J. Multiphas. Flow. 37: 1147-1155
  35. Hooman, F., Masahiro, K. (2010). Immiscible liquid-liquid two phase flow in a microchannel: flow patterns and pressure drop characteristics, 7th International Conference on Multiphase Flow 2010, Tampa, FL USA
  36. Salim, A., Mostafa, F., Jacques, P., Judith, S. (2008) Oil–Water Two-Phase Flow in Microchannels: Flow Patterns and Pressure Drop Measurements. Can. J. Chem. Eng. 86: 978-988
  37. Zhao, C.X., Anton, P.J., Middelberg. (2011). Two-phase microfluidic flows, Chem. Eng. Sci. 66: 1394-1411
  38. Jovanović, J., Rebrov, E.V., Nijhuis, T.A., Kreutzer, M.T., Hessel, V., Schouten. J.C. (2012). Liquid–Liquid Flow in a Capillary Microreactor: Hydrodynamic Flow Patterns and Extraction Performance. Ind. Eng. Chem. Res. 51: 1015-1026
  39. Xu, J.H., Luo, G.S., Li, S.W., Chen, G.G. (2006). Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab. Chip. 6: 131-136
  40. Tice, J.D., Song, H., Lyon, A.D., Ismagilov, R.F. (2003). Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir. 19: 9127-9133
  41. Chasanis, P., Brass, M., Eugeny, Y.K. (2010). Investigation of multicomponent mass transfer in liquid–liquid extraction systems at microscale. Int. J. Heat. Mass. Transfer. 53: 3758-3763
  42. Herweck, T., Hardt, S., Hessel, V., Löwe, H., Hofmann, C., Weise, F., Dietrich, T., Freitag, A. (2001). Visualization of flow patterns and chemical synthesis in transparent microreactors, in Proceedings of the 5th International Conference on Microreaction Technology. 215-229
  43. Kikutani, Y., Hisamoto, H., Tokeshi, M., Kitamori, T. (2002). Fabrication of a glass microchip with three-dimensional microchannel network for 2 x 2 parallel synthesis, Lab. Chip. 2: 188-192
  44. Ducry, L., Roberge, D.M. (2005). Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem. 117: 8186-8189
  45. de Bellefon, C., Tanchoux, N., Caravieilhes, S., Grenoullet, P., Hessel, V. (2000). Microreactors for dynamic, high-throughput screening of fluid/liquid molecular catalysis. Angew. Chem. Int. Ed. 39: 3442-3445
  46. Ueno, K., Kitagawa, F., Kitamura, N. (2002) Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip. Lab. Chip. 2: 231-234
  47. Antes, J., Turcke, T., Kerth, J., Marioth, E., Schnurer Krause, H.H., Lobbecke, S. (2001). Application of microreactors for the nitration of ureas. 32nd International Annual Conference of ICT (Energetic Materials). p.146
  48. Okamoto, H. (2006). Effect of alternating pumping of two reactants into a microchannel on a phase transfer reaction. Chem. Eng. Technol. 29: 504-506
  49. Ueno, M., Hisamoto, H., Kitamori, T., Kobayashi, S. (2003). Phase-transfer alkylation reactions using microreactors. Chem. Commun. 8: 936-937
  50. Acke, D.R.J., Stevens, C.V. (2007). A HCN -based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3,4-diamino-1H-isochromen-1-ones. Green Chem. 9: 386-390
  51. Stone, H.A., Stroock, A.D., Ajdari, A. (2004). ENGINEERING FLOWS IN SMALL DEVICES Microfluidics toward a Lab-on-a-Chip, Annu. Rev. Fluid Mech., 36: 381-411
  52. Harries, N., Burns, J.R., Barrow, D.A., Ramshaw, C. (2003). A numerical model for segmented flow in a microreactor. Int. J. Heat. Mass. Tran. 46: 3313-3322
  53. Kashid, M.N., Agar, D.W. (2007). Hydrodynamics of liquid–liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chem. Eng. J. 1-3: 1-13
  54. Jovanovic, J, Zhou, W., Rebrov, E., Nijhuis, T.A., Hessel, V., Schouten, J.C. (2011). Liquid liquid slug flow: hydrodynamics and pressure drop. Chem. Eng. Sci. 66: 42-54
  55. Berthier, J., Tran, V.M., Mittler, F., Sarrut, N. (2009). The physics of a co-flow micro-extractor: Interface stability and optimal extraction length. Sensors Actuators A. 149: 56-64
  56. Kang, T., Han, J., Lee, K.S. (2008). Concentration gradient generator using a convective-diffusive balance. Lab Chip. 8: 1220-1222
  57. Kamholz, A.E., Schilling, E.A., Yager, P. (2001). Optical measurement of transverse molecular diffusion in a Microchannel. Biophys. J. 80: 1967-1972
  58. Kamholz, A.E., Yager, P. (2001). Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys. J. 80: 155-160
  59. Burns, J.R., Ramshaw, C. (2001). The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab. Chip. 1: 10-15
  60. Kumemura, M., Korenaga, T. (2006). Quantitative extraction using flowing nano-liter droplet in microfluidic system. Anal. Chim. Acta. 558: 75-79
  61. Mary, P., Studer, V., Tabeling, P. (2008). Microfluidic droplet-based liquid-liquid extraction. Anal. Chem. 80: 2680-2687
  62. Tan, J., Lu, Y.C., Xu, J.H., Luo, G.S. (2012). Mass transfer performance of gas–liquid segmented flow in microchannels, Chem. Eng. J. 181-182: 229-235
  63. Bujian, X., Wangfeng, C., Xiaolei, L., Xubin Z. (2013). Mass transfer behaviour of liquid–liquid slug flow in circular cross-section Microchannel. Chem. Eng. Res. Des. 91: 1203-1211
  64. Jovanovic, J., Rebrov, E.V., Nijhuis, T.A., Hessel, V., Schouten, J.C. (2010). Slug flow microreactor for phase transfer catalysis: control of selectivity and productivity, Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity. Ind. Eng. Chem. Res. 49: 2681-2687
  65. Ufer, A., Sudhoff, D., Mescher, A., Agar, D.W. (2011). Suspension catalysis in a liquid–liquid capillary microreactor. Chem. Eng. J. 167: 468-474
  66. Raghvendra, G., Sharon, S.Y.L., Rogerio, M., David, F.F., Brian, S.H. (2013). Hydrodynamics of liquid–liquid Taylor flow in microchannels. Chem. Eng. Sci. 92: 180-189
  67. Whitman, W.G. (1923). Preliminary experimental confirmation of the two-film theory of gas absorption. Chem. Meta. Eng. 29: 146-148
  68. Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Eng. 31: 365-389
  69. Cussler, E.L. (1984). Diffusion: Mass Transfer in Fluid Systems, 1 ed. Cambridge University Press
  70. Nathalie, D.M.R., Laurent, P., Christophe, G., Patrick, C., (2008). Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow. Chem. Eng. Sci. 63: 5522-5530
  71. Knudsen, J.G., Hottel, H.C., Sarofim, A.F., Wankat, P.C., Knaebel, K.S. (1998). Perr's Chemical Engineer's Handbook, McGraw-Hill, New York. p.5-1
  72. Slater, M.J. (1994). Liquid–Liquid Extraction Equipment. Wiley, New York. p. 45
  73. Flavie, S., Thomas, B, Laurent, P., Christophe, G., Jacques, M. (2008). Hydrodynamic structures of droplets engineered in rectangular micro-channels. Microfluid. Nanofluid. 5: 131-135
  74. Kashid, M.N., Agar, D.W., Turek, S. (2007). CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor. Chem. Eng. Sci. 62: 5102-5109
  75. Kashid, M.N., Renken, A., Kiwi-Minsker, L. (2011). Influence of flow regime on mass transfer in different types of microchannels. Ind. Eng. Chem. Res. 50: 6906-6914
  76. Raimondi, N.D.M., Prat, L., Gourdon, C., Tasselli, J. (2014). Experiments of mass transfer with liquid–liquid slug flow in square microchannels. Chem. Eng. Sci. 105: 169-178
  77. Morini, G.L., Lorenzini, M., Colin, S., Geoffroy, S. (2007). Experimental analysis of pressure drop and laminar to turbulent transition for gas flows in microtubes. Heat Transfer Eng. 28: 670-679
  78. Celata, G.P., Lorenzini, M., Morini, G.L., Zummo, G. (2009). Friction factor in micropipe gas flow under laminar, transition and turbulent flow regime. Int. J. Heat. Fluid Fl. 30: 814-822
  79. Amit, G., Ranganathan, K., (2010). Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. Phys. Fluids 22: 122001-122011
  80. Xu, J.H., Li, S.W., Tan, J., Wang, Y.J., Luo, G.S. (2006) Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir. 22: 7943-7946
  81. Kawakatsu, T., Tragardh, G., Tragardh, C., Nakajima, M., Oda, N., Yonemoto, T. (2001). The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloid Surface A. 179: 29-37
  82. Nie, Z., Seo, M., Xu, S., Lewis, P.C., Mok, M., Kumacheva, E., Whitesides, G.M., Garstecki, P., Stone, H.A. (2008). Emulsification in a microfluidic flow-fociusing device: effect of the viscosities of the liuids. Microfluid. Nanofluid. 5: 585-594
  83. Jovanovic, J., Hengeveld, W., Rebrov, E.V., Nijhuis, T.A., Hessel, V., Schouten J.C. (2011). Liquid-liquid flow patterns and their extraction application in long capillary microreactors. Chem. Eng. Technol. 34: 1691-1699
  84. Taha, T., Cui, Z.F. (2004). Hydrodynamics of slug flow inside capillaries. Chem. Eng. Sci. 59: 1181-1190
  85. Kashid, M.N., Rivas, D.F., Agar, D.W., Turek, S. (2008). On the hydrodynamics of liquid–liquid slug flow capillary microreactors. Asia-Pac. J. Chem. Eng. 3: 151-160

Last update:

No citation recorded.

Last update:

No citation recorded.