skip to main content

Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review

*Ram Prasad  -  Department of Chemical Engineering & Technology, Banaras Hindu University, Varanasi 221005, India
Gaurav Rattan  -  Department of Chemical Engineering & Technology, Panjab University, Chandi, India

Citation Format:

The CuO-CeO2 catalytic systems are getting popular for catalyzing very actively the various reactions of environmental, commercial and other importance. In recent years, many methods have been in use for the preparation of versatile CuO-CeO2 catalysts. Reviewing the useful preparation methods of such catalysts is thus the need of the time in view of the globally increasing interest towards all the low temperature redox reactions. This article presents a short review on seventeen different preparation methods of the copperceria catalysts, followed by critical discussions on the related redox properties and advancements accomplished with respect to their application aspect, including a systematic compilation of the concerned newer literature in a well-concievable tabular form. ©2010 BCREC UNDIP. All rights reserved

(Received: 14th January 2010, Revised: 31st January 2010, Accepted: 1st February 2010)

[How to Cite: R. Prasad, G. Rattan. (2010). Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (1): 7-30. doi:10.9767/bcrec.5.1.7125.7-30]

[How to Link / DOI: || or local:]

Fulltext View|Download
Keywords: CuO-CeO2 catalysts; preparation methods; potential applications; redox properties

Article Metrics:

  1. Liu, W., and Flytzani-Stephanopoulos, M. 1995. Total Oxidation of Carbon Monoxide and Methane over Transition Metal-fluorite Oxide Composite Catalysts I. Catalyst Composition and Activity. J. Catal. 153: 304-316
  2. Luo, M. F.; Zhong, Y. J.; Yuan, X. X.; and Zheng, X. M. 1997. TPR and TPD Studies of CuO/CeO2 Catalysts for Low Temperature CO Oxidation. Appl. Catal. A. 162: 121-131
  3. Harrison, P. G.; Ball, I. K.; Azelee, W.; Daniell, W.; and Goldfarb, D. 2000. Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chem. Mater. 12: 3715-3725
  4. Zhang, S-M.; Huang, W-P.; Qiu, X-H.; Li, B-Q.; Zheng, X-C; and Wu, S-H. 2002. Comparative Study On Catalytic Properties of Low-Temperature CO Oxidation of Cu/CeO2 and CuO/CeO2 Prepared via Solvated Metal Atom Impregnation and Conventional Impregnation. Catal. Letters 80: 41-46
  5. Zhou, K.; Xu, R.; Sun, X.; Chen, H.; Tian, Q.; Shen, D.; and Lia, Y. 2005. Favorable Synergetic Effects Between CuO and the Reactive Planes of Ceria Nanorods. Catal Letters 101: 169-173
  6. Sundar, R. S.; and Deevi, S. 2006. CO Oxidation Activity of Cu–CeO2 Nano-Composite Catalysts Prepared by Laser Vaporization and Controlled Condensation. J of Nanoparticle Research 8: 497–509
  7. Zheng, X.; Zhang, X.; Wang, S.; Wang, X.; and Wu, S. 2007. Effect of Addition of Base on Ceria and Reactivity of CuO/CeO2 Catalysts for Low-Temperature CO Oxidation. Journal of Natural Gas Chemistry 16: 179–185
  8. Cao, J-L.; Wang, Y.; Zhang, T-Y.; Wu, S-H.; Yuan, Z-Y. 2008. Preparation Characterization and Catalytic Behaviour of Nanostructured Mesoporous CuO/Ce0.8Zr0.2O2 Catalyst for Low Temperature CO Oxidation. Appl. Catal. B 78: 120-128
  9. Aguila, G.; Gracia, F.; and Araya, P. 2008. CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A: Gen 343: 16–24
  10. Zou, Z-Q.; Meng, M.; Guo, Li-H.; and Zha, Yu-Q. 2009. Synthesis and Characterization of CuO/Ce1−x TixO2 Catalysts used for Low-Temperature CO Oxidation. J of Hazardous Materials 163: 835–842
  11. Terribile, D.; Trovarelli, A.; de Leitenburg, C.; Primavera, A; and Dolcetti, G. 1999. Catalytic Combustion of Hydrocarbons with Mn and Cu-Doped Ceria-Zirconia Solid Solutions, Catal Today 47: 133-140
  12. Wang, C.-H.; Lin, S.-S.; Chen, C.-L.; and Weng, H-S. 2006. Performance of the Supported Copper Oxide Catalysts for the Catalytic Incineration of Aromatic Hydrocarbons. Chemosphere 64: 503–509
  13. Tang, X.; Xu, Y.; Shen, W. 2008. Promoting Effect of Copper on the Catalytic Activity of MnOx–CeO2 Mixed Oxide for Complete Oxidation of Benzene. Chem Eng J. 144: 175–180
  14. Luo, J.-Y.; Meng, M.; Yao, J.-S.; Li, X.-G.; Zha, Y.-Q.; Wang, X.; and Zhang, T.-Y.. 2009. One-Step Synthesis of Nanostructured Pd-Doped Mixed Oxides MOx-CeO2 (M = Mn, Fe, Co, Ni, Cu) for Efficient CO and C3H8 Total Oxidation. Appl Catal B: Env. 87: 92-103
  15. Larsson, P-O.; and Andersson, A. 2000. Oxides of Copper, Ceria Promoted Copper, Manganese and Copper Manganese on Al2O3 for the Combustion of CO, Ethyl Acetate and Ethanol. Appl Catal B: Env 24: 175–192
  16. Hu, C.; Zhu, Q.; Jiang, Z.; Zhang, Y.; and Wang, Y. 2008. Preparation and Formation Mechanism of Mesoporous CuO–CeO2 Mixed Oxides with Excellent Catalytic Performance for Removal of VOCs. Microporous and Mesoporous Materials 113: 427-434
  17. Delimaris, D.; and Ioannides, T. 2009. VOC Oxidation over CuO–CeO2 Catalysts Prepared by a Combustion Method. Appl Catal B: Env 89: 295–302
  18. Bera, P.; Aruna, S.T.; Patil, K.C.; and Hegde, M.S. 1999. Studies on Cu/CeO2: A New NO Reduction Catalyst. Journal of Catalysis 186: 36–44
  19. Xiaoyuan, J.; Liping, L.; Guanghui, D.; Yingxu, C.; and Xiaoming, Z. 2004. The Active Species and Catalytic Properties of CuO/CeO2-TiO2 Catalysts for NO+CO Reaction. J of Mater Science 39: 4663-4667
  20. Amin, N. A. S.; Tan, E. F.; and Manan, Z. A. 2003. Selective Reduction of NOx with C3H6 over Cu and Cr Promoted CeO2 Catalysts. Appl Catal B: Env 43: 57-69
  21. Amin, N. A. S.; and Chong, C. M. 2005. SCR of NO with C3H6 in the Presence of Excess O2 over Cu/Ag/CeO2-ZrO2 Catalyst, Chem. Eng. J. 113: 13–25
  22. Choung, J. W.; and Nam, I.-S. 2006. Role of Cerium in Promoting the Stability of CuHM Catalyst Against HCl to Reduce NO with NH3. Appl Catal A: Gen 312: 165–174
  23. Courtois, X.; and Perrichon, V. 2005. Distinct Roles of Copper in Bimetallic Copper–Rhodium Three-Way Catalysts Deposited on Redox Supports Appl Catal B: Env 57: 63–72
  24. Wu, X.; Liu, D.; Li, K.; Li, J.; and Weng, D. 2007. Role of CeO2–ZrO2 in Diesel Soot Oxidation and Thermal Stability of Potassium Catalyst, Catalysis Communications 8: 1274–1278
  25. Liang, Q.; Wu, X.; Weng, D.; and Lu, Z. 2008. Selective Oxidation of Soot over Cu Doped Ceria/ Ceria–Zirconia Catalysts. Catalysis Communications 9: 202–206
  26. Weng, D.; Li, J.; Wu, X.; and Lin, F. 2008. Promotional Effect of Potassium on Soot Oxidation Activity and SO2-Poisoning Resistance of Cu/CeO2 Catalyst. Catalysis Communications 9: 1898–1901
  27. Wu, X.; Lin, F.; Weng, D.; and Li, J. 2008. Simultaneous Removal of Soot and NO over Thermal Stable Cu–Ce–Al Mixed Oxides. Catalysis Communications 9: 2428–2432
  28. Reddy, B. M.; and Rao, K. N. 2009. Copper Promoted Ceria–Zirconia Based Bimetallic Catalysts for Low Temperature Soot Oxidation. Catalysis Communications 10: 1350–1353
  29. Zhu, T.; Kundakovic, L.; Dreher, A.; and Flytzani-Stephanopoulos, M. 1999. Redox Chemistry over CeO2-Based Catalysts: SO2 Reduction by CO or CH4. Catalysis Today 50: 381-397
  30. Flytzani-Stephanopoulos, M.; Zhu, T.; and Li, Y. 2000. Ceria-Based Catalysts for the Recovery of Elemental Sulfur from SO2-Laden Gas Streams. Catalysis Today 62: 145–158
  31. Rodas-Grapaý´n, A.; Arenas-Alatorre, J.; Go´mez-Corte´s, A.; and Dý´az, G. 2005. Catalytic Properties of a CuO–CeO2 Sorbent-Catalyst for de-SOx Reaction. Catal Today 107–108: 168–174
  32. Pantazis, C. C.; Petrakis, D. E.; and Pomonis, P. J. 2007. Simultaneous and/or Separate SO2/NO Reduction by CO over High Surface Area Cu/Ce Containing Mesoporous Silica, Appl Catal B: Env 77: 66–72
  33. Hung, C.-M. 2008. Catalytic Decomposition of Ammonia over Bimetallic CuO/CeO2 Nanoparticle Catalyst. Aerosol and Air Quality Research 8: 447-458
  34. Hung, C.-M. 2008. Decomposition Kinetics of Ammonia in Gaseous Stream by a Nanoscale Copper-Cerium Bimetallic Catalyst. Journal of Hazardous Materials 150: 53–61
  35. Lei, Z.; and Liu, Z. 2007. Behavior of Cu–Ce/AC Catalyst–Sorbent in Dry Oxidation of Phenol. Fuel Processing Technology 88: 607–615
  36. Kim, K.-H.; Kim, J.-R.; and Ihm, S.-K. 2009. Wet Oxidation of Phenol over Transition Metal Oxide Catalysts Supported on Ce0.65Zr0.35O2 Prepared by Continuous Hydrothermal Synthesis in Supercritical Water. J of Hazardous Materials 167: 1158–1162
  37. Liu, Y.; Hayakawa, T.; Suzuki, K.; Hamakawa, S.; Tsunoda, T.; Ishii, T.; and Kumagai, M. 2002. Highly Active Copper/Ceria Catalysts for Steam Reforming of Methanol. Appl Catal A: Gen. 223: 137–145
  38. Zhang, X.; and Shi, P. 2003. Production of Hydrogen by Steam Reforming of Methanol on CeO2 Promoted Cu/Al2O3 Catalysts. J of Mole Catal A: Chem. 194: 99-105
  39. Papavasiliou, J.; Avgouropoulos, G.; and Ioannides, T. 2004. Production of Hydrogen via Combined Steam Reforming of Methanol over CuO–CeO2 Catalysts. Catalysis Communications 5: 231–235
  40. Men, Y.; Gnaser, H.; Zapf, R.; Hessel, V.; and Ziegler, C. 2004. Parallel Screening of Cu/CeO2/c-Al2O3 Catalysts for Steam Reforming of Methanol in a 10-Channel Micro-Structured Reactor. Catalysis Communications 5: 671–675
  41. Shan, W.; Feng, Z.; Li, Z.; Zhang, J.; Shen, W.; and Li, C. 2004. Oxidative Steam Reforming of Methanol on Ce0.9Cu0.1OY Catalysts prepared by Deposition–Precipitation, Coprecipitation, and Complexation–Combustion methods. J of Catalysis 228: 206–217
  42. Oguchi, H.; Nishiguchi, T.; Matsumoto, T.; Kanai, H.; Utani, K.; Matsumura, Y.; and Imamura, S. 2005. Steam Reforming of Methanol over Cu/CeO2/ZrO2 Catalysts. Applied Catalysis A: General 281: 69–73
  43. Patel, S.; and Pant, K. K. 2007. Hydrogen Production by Oxidative Steam Reforming of Methanol Using Ceria Promoted Copper–Alumina Catalysts. Fuel Processing Technology 88: 825–832
  44. Pérez-Hernández, R.; Gutiérrez-Martínez, A.; and Gutiérrez-Wing, C. E. 2007. Effect of Cu Loading on CeO2 for Hydrogen Production by Oxidative Steam Reforming of Methanol. Int J of Hydrogen Energy 32: 2888 – 2894
  45. Patel, S.; and Pant, K. K. 2009. Kinetic Modeling of Oxidative Steam Reforming of Methanol over Cu/ZnO/CeO2/ Al2O3 Catalyst. Appl Catal A: Gen 356 189–200
  46. Udani, P. P. C.; Gunawardana, P. V. D. S.; Lee, H. C.; and Kim, D. H. 2009. Steam Reforming and Oxidative Steam Reforming of Methanol over CuO–CeO2 Catalysts. Int J of Hydrogen Energy 1–8, Available online at
  47. Bickford, E. S.; Velu, S.; and Song, C. 2005. Nano-Structured CeO2 Supported Cu-Pd Bimetallic Catalysts for the Oxygen-Assisted Water–Gas-Shift Reaction. Catalysis Today 99: 347–357
  48. Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martý´nez-Arias, A. and Ferna´ndez-Garcý´a, M. 2006. In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu-CeO2 Catalysts: Complex Interaction Between Metallic Copper and Oxygen Vacancies of Ceria. J. Phys. Chem. B 110: 428-434
  49. Fox, E. B.; Velu, S.; Engelhard, M. H.; Chin, Ya-Huei; Miller, J. T.; Kropf, J.; and Song, C. 2008. Characterization of CeO2-Supported Cu–Pd Bimetallic Catalyst for the Oxygen-Assisted Water–Gas Shift Reaction. Journal of Catalysis 260: 358–370
  50. Gunawardana, P. V. D. S.; Lee, H. C.; and Kim, D. H. 2009. Performance of Copper–Ceria Catalysts for Water Gas Shift Reaction in Medium Temperature Range. Int. J of Hydrogen Energy 34: 1336–1341
  51. Yusheng, S.; Lei, L.; Yingying, Z.; Xingyi, L.; Qi, Z.; and Kemei, W. 2009. Effect of Yttrium Addition on Water-Gas Shift Reaction over CuO/CeO2 Catalysts. Journal of Rare Earths 27: 411-417
  52. Maluf, S. S.; and Assaf, E. M. 2009. La2−xCex Cu1−yZnyO4 Perovskites for High Temperature Water-Gas Shift Reaction. Journal of Natural Gas Chemistry 18 – Available online at
  53. Avgouropoulos, G,; and Ioannides, T. 2003. Selective CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea–Nitrate Combustion Method. Applied Catalysis A: General 244: 155–167
  54. Kim, D. H.; and Cha, J. E. 2003. A CuO–CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catal Letters 86: 107-112
  55. Ratnasamy, P.; Srinivas, D.;. Satyanarayana, C. V. V; Manikandan, P.; Kumaran, R S. S.; Sachin, M.; and Shetti, V. N. 2004. Influence of the Support on the Preferential Oxidation of CO in Hydrogen-Rich Steam Reformates over the CuO–CeO2–ZrO2 System. Journal of Catalysis 221: 455–465
  56. Avgouropoulos, G.; Ioannides, T.; and Matralis, H. 2005. Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Appl Catal B: Env. 56: 87–93
  57. Avgouropoulos, G.; Papavasiliou, J.; Tabakova, T.; Idakiev, V.; and Ioannides, T. 2006. A Comparative Study of Ceria-Supported Gold and Copper Oxide Catalysts for Preferential CO Oxidation Reaction. Chemical Engineering Journal 124: 41–45
  58. Chena, Y.-Z.; Liaw, B.-J.; Chang, W.-C.; and Huang, C.-T. 2007. Selective Oxidation of CO in Excess Hydrogen over CuO/CexZr1−xO2.Al2O3 Catalysts. International J of Hydrogen Energy 32: 4550 – 4558
  59. Gamarra, D.; Horn´es, A.; Kopp´any, Zs.; Schay, Z.; Munuera, G.; Soria J.; and Mart´ınez-Arias, A. 2007. Catalytic Processes During Preferential Oxidation of CO in H2-Rich Streams over Catalysts Based on Copper–Ceria. J of Power Sources 169: 110–116
  60. Jung, C. R.; Kundu, A.; Nam, S. W.; and Lee, H.-I. 2007. Doping Effect of Precious Metal on the Activity of CuO-CeO2 Catalyst for Selective Oxidation of CO. Applied Catalysis A: General 331: 112–120
  61. Liu, Z.; Zhou, R.; and Zheng, X. 2007. Preferential Oxidation of CO in Excess Hydrogen over CuO-CeO2 Catalyst Prepared by Chelating Method. Journal of Natural Gas Chemistry 16167–172
  62. Caputo, T.; Lisi, L.; Pirone, R.; and Russo, G. 2008. On the Role of Redox Properties of CuO/CeO2 Catalysts in the Preferential Oxidation of CO in H2-Rich Gases. Applied Catalysis A: General 348: 42–53
  63. Go´mez-Corte´s, A.; Ma´rquez, Y.; Arenas-Alatorre, J.; and Dı´az, G. 2008. Selective CO Oxidation in Excess of H2 over High-Surface Area CuO/CeO2 Catalysts. Catalysis Today 133–135: 743–749
  64. Liu, Z.; Zhou, R.; and Zheng, X. 2008. Influence of Rare-Earth Metal Doping on the Catalytic Performance of CuO-CeO2 for the Preferential Oxidation of CO in Excess Hydrogen. J of Natural Gas Chem. 17: 283-287
  65. Lee, H. C.; and Kim, D. H. 2008. Kinetics of CO and H2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O. Catalysis Today 132: 109–116
  66. Gurbani, A.; Ayastuy, J. L.; Gonza´lez-Marcos, M. P.; Herrero, J. E.; Guil, J. M.; and Gutie´rrez-Ortiz, M. A. 2009. Comparative Study of CuO–CeO2 Catalysts Prepared by Wet Impregnation and Deposition–Precipitation. Int J of Hydrogen Energy 34: 547–553
  67. Scho¨nbrod, B.; Marin˜o, F.; Baronetti, G.; and Laborde, M. 2009. Catalytic Performance of a Copper–Promoted CeO2 Catalyst in the CO Oxidation: Influence of the Operating Variables and Kinetic Study. Int J of Hydrogen Energy 34: 4021–4028
  68. Hung, C.-M. 2006. Selective Catalytic Oxidation of Ammonia to Nitrogen on CuO-CeO2 Bimetallic Oxide Catalysts. Aerosol Air Qual. Res. 6: 150-169
  69. Cha, K.-S.; Kim, H.-S.; Yoo, B.-K.; Lee, Y.-S.; Kang, K.-S.; Park, C.-S.; and Kim, Y.-H. 2009. Reaction Characteristics of Two-Step Methane Reforming over a Cu-Ferrite/Ce–ZrO2 Medium, Int J of Hydrogen Energy 34: 1801–1808
  70. He, H.; Vohs, J. M.; and Gorte, R. J. 2003. Effect of Synthesis Conditions on the Performance of Cu-CeO2-YSZ Anodes in SOFCs, J. Electrochem. Soc. 150: A1470–A1475
  71. Jiang, S. P. 2006. A review of wet impregnation—An Alternative Method for the Fabrication of High Performance and Nano-Structured Electrodes of Solid Oxide Fuel Cells, Mater Sci and Eng A 418: 199–210
  72. Ye, X.-F.; Wang, S.R.; Hu, Q.; Chen, J.Y.; Wen, T.L.; and Wen, Z.Y. 2009. Improvement of Cu–CeO2 anodes for SOFCs running on Ethanol Fuels, Solid State Ionics 180: 276–281
  73. Hornés, A.; Gamarra, D.; Munuera, G.; Fuerte, A.; Valenzuela, R. X.; Escudero, M. J.; Daza, L.; Conesa, J. C.; Bera, P.; and Martínez-Arias A. 2009. Structural, Catalytic/ redox and Electrical Character- ization of Systems Combining Cu–Ni with CeO2 or Ce1−xMxO2−δ (M=Gd or Tb) for Direct Methane Oxidation. J of Power Sources 192: 70–77
  74. Deraz, N.M. 2009. Characterization and Catalytic Performance of Pure and Li2O-doped CuO/CeO2 Catalysts. Applied Surface Science 255: 3884–3890
  75. Konstantin A.; Pokrovski, and Bell, Alexis T. 2006. An Investigation of the Factors Influencing the Activity of Cu/CexZr1−xO2 for Methanol Synthesis via CO Hydrogenation. Journal of Catalysis 241: 276–286
  76. Kundakovic Lj.; and Stephanopoulos, M. F. 1998. Cu- and Ag- Modified Cerium Oxide Catalysts for Methane Oxidation. J. Catal. 179: 203-221
  77. Bjo¨rn, S.; Didier, G.; Robert, E. B.; Andreas, H.; Arne, A.; and Wallenberg, L.R. 2002. Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. J. Catal. 211: 119-133
  78. Arias, A.; Martý´nez, A. B.; Hungrý´a, Fernan´dez-Garcý´a, M.; Conesa, J. C.; and Munuera, G. 2004. Interfacial Redox Processes under CO/O2 in a Nanoceria-Supported Copper Oxide Catalyst. J. Phys. Chem. B 108: 17983-17991
  79. Zheng, X.; Wang, S.; Wang, S.; Zhang, S.; Huang, W.; and Wu, S. 2004. Copper Oxide Catalysts Supported on Ceria for Low-Temperature CO Oxidation. Catalysis Communications 5: 729–732
  80. Zheng, X.; Zhang, X.; Wang, X.; Wang, S.; and Wu, S. 2005. Preparation and Characterization of CuO/CeO2 Catalysts and their Application in Low-Temperature CO Oxidation. Appied Catal A. General 295: 142-149
  81. Liu, W.; Sarofim, A. F.; and Stephanopoulos, M. F. 1994. Reduction of Sulfur Dioxide by Carbon Monoxide to Elemental Sulfur over Composite Oxide Catalysts. Appl Catal B. Environmental 4: 167-186
  82. Sedmark, G.; and Hocevar, S. 2003. Kinetics of selective CO Oxidation in Excess of H2 Over the Nanostructured Cu0.1Ce0.9O2−y catalyst. J. Catal. 213: 135-150
  83. Sedmark, G.; Hocevar, S.; and Levec, J. 2004. Transient Kinetic Model of CO Oxidation Over a Nanostructured Cu0.1Ce0.9O2−y Catalyst. J. Catal. 222: 87-99
  84. Liu, Y.; Fu, Q.; and Stephanopoulos, M. F. 2004. Preferential Oxidation of CO in H2 over CuO-CeO2 Catalysts. Catal. Today 93–95: 241-246
  85. Marin˜ o, F.; Descormr, C.; and Duprez, D. 2005. Supported base Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Excess Hydrogen (PROX). Appl. Catal. B 58: 175
  86. Marban, G.; and Fuertes, A.B. 2005. Highly Active and Selective CuOx/CeO2 Catalyst Prepared by A Single-Step Citrate Method for Preferential Oxidation of Carbon Monoxide. Appl. Catal. B 57: 43-53
  87. Park, J.; Jeong, J.; Yoon, W.; Jung, H.; Lee, H.; Lee, D.; Park, Y.; and Rhee, Y. 2004. Activity and Characterization of the Co-Promoted CuO–CeO2/γ-Al2O3 Catalyst for the Selective Oxidation of CO in excess Hydrogen. Appl. Catal. A. 274: 25-32
  88. Cheektamarla, P.; Epling, W.; and Lane, A. 2005. Selective Low-Temperature Removal of Carbon Monoxide from Hydrogen-Rich Fuels over Cu–Ce–Al Catalysts. J. Power Sources 147: 178-183
  89. Park, J. W.; Jeong, J. H.; Yoon, W. L.; Kim, C. S.; Lee, D. K.; Park, Y. K.; Rhee, Y. W. 2005. Selective Oxidation of CO in Hydrogen-Rich Stream Over Cu–Ce Catalyst Promoted with Transition Metals. Int. J. Hydr. Energy 30: 209-220
  90. Shiau, C.; Ma, M.; and Chuang, C. 2006. CO Oxidation over CeO2-Promoted Cu/γ-Al2O3 Catalyst: Effect of Preparation Method. Appl. Catal. A 301: 89-95
  91. Manzoli, M.; Di Monte, R.; Boccuzzi, F.; and Coluccia. S. 2005. CO oxidation over CuOx-CeO2-ZrO2 Catalysts: Transient behaviour and Role of Copper Clusters in Contact with Ceria. Appl. Catal. B 61: 192-205
  92. Schwarz, J. A.; Contescu C.; and Contescu, A. 1995. Methods for Preparation of Catalytic Materials. Chem. Rev. 95: 477-510
  93. Hu, Yuhai; Dong, L.; Wang, J.; Ding, W.; and Chen, Y. 2000. Activities of supported copper oxide Catalysts in the NO+CO Reaction at Low Temperatures. Journal of Molecular Catalysis A. Chemical 162: 307–316
  94. Xiaoyuan, J.; Liping, L.; Yingxu, C.; and Xiaoming, Z. 2003. Effects of CuO/CeO2 and CuO/γ-Al2O3 Catalysts on NO + CO reaction. Journal of Molecular Catalysis A. Chemical 197: 193–205
  95. Hermans, L. A. M.; and Geus, J. W. 1979. Prepa-ration of Catalysts II, Elsevier, Amsterdam, p. 113
  96. Zimmer, P.; Tscho¨ pe, A.; and Birringer, R. 2002. Temperature-Programmed Reaction Spectroscopy of Ceria- and Cu/Ceria-Supported Oxide Catalyst. Journal of Catalysis 205: 339–345
  97. Shen, W. J.; Ichihashi, Y.; and Matsumura, Y. 2002. Methanol Synthesis from Carbon Monoxide and Hydrogen over Ceria Supported Copper Catalyst Prepared by Co-Precipitation Method. Catal. Lett. 83: 33-35
  98. Hoˇcevar, S.; Batista, J.; and Levec, J. 1999. Wet Oxidation of Phenol on Ce1-xCuxO2-δ Catalyst. Journal of Catalysis 184: 39–48
  99. Djinovic´, P.; Batista, J.; and Pintar, A. 2008. Calcination Temperature and CuO loading dependence on CuO-CeO2 Catalyst Activity for water-gas shift reaction. Applied Catalysis A. General 347: 23–33
  100. Soler Illia, G. J. A. A.; Jobba´gy, M.; Candal, R. J.; Regazzoni, A. E.; Blesa, M. A. 1998. Synthesis of Metal Oxide Particles from Aqueous Media: The Homogeneous Alkalinization Method, J. Dispersion Sci. Technol. 19: 207
  101. Jobba´gy, M.; Marin˜o, F.; Scho¨nbrod, B.; Baronetti, G.; and Laborde, M. 2006. Synthesis of Copper-promoted CeO2 Catalysts, Chem. Mater. 18: 1945-1950
  102. Tao, H.; Jian, Y.; Jun, Z.; Danjun, W.; Huanling, S. and Lingjun, C. 2007. Preparation of a Cu–Ce–O Catalyst by Urea Combustion for Removing CO from Hydrogen, Chinese Journal of Catalysis 28: 844-846
  103. Purohit R. D.; Sharma, B. P.; Pillai, K.T.; and Tyagi, A.K. 2001. Ultrafine Ceria Powders via Glycine-nitrate Combustion. Mater. Res. Bull. 36(15): 2711–2721
  104. Zhu, J.; Gao, Q.; and Chen, Zhi. 2008. Preparation of Mesoporous Copper Cerium Bimetal Oxides with high performance for Catalytic Oxidation of Carbon Monoxide, Appl Catal B. Environmental 81: 236–243
  105. Skårman, B.; Nakayama, T.; Grandjean, D.; Benfield, R. E.; Olsson, E.; Niihara, K.; and Wallenberg, L. R. 2002. Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-Energy Diffraction Study. Chem. Mater. 24: 3686-3699
  106. Guillou, N.; Nistor L. C.; Fuess, H.; and Hahn, H. 1997. Microstructural Studies of Nanocrystalline CeO2 Produced By Gas Condensation. Nanostruct. Mater. 8: 545-557
  107. Birringer, R.; Gleiter, H.; Klein, H. P.; and Marquardt, P. 1984. Nanocrystalline Materials an approach to a Novel Solid Structure with gas-like Disorder, Phys. Lett. A 102: 365-369
  108. Siegel, R. W. 1991. Cluster-assembled Nano Materials. Annu. Rev. Mater. Sci. 21, 559
  109. Moser, W. R. 1996. Advanced Catalysts and Nanostructured Materials. Academic Press: San Diego, CA
  110. Hagemeyer, A.; Jandeleit, B.; Liu, Y.; Poojary, D. M.; Turner, H. W.; Volpe Jr., A. F.; Weinberg, W. H. 2001. Applications of Combinatorial Methods in Catalysis. Appl. Catal. A. Gen. 221: 23-43
  111. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; and Mallouk, T. E. 1998. Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electro catalysts. Science 280: 1735-1737
  112. Wilhelm F. M.; and Saalfrank, J. 2004. Discovery, Combinatorial Chemistry and a Newselective CO-oxidation Catalyst, Chemical Engineering Science 59: 4673-4678
  113. Heidi M. R.; An, H.; McGinn, P. J. 2003. Combinatorial Synthesis and Characterization of Mixed Metal Oxides for Soot Combustion. Applied Catalysis B. Environmental 44: 347–354
  114. Pillai, U. R.; and Deevi, S. 2006. Room Temperature Oxidation of Carbon Monoxide Over Copper Oxide Catalyst. Appl Catal B. Environmental 64: 146-151
  115. Spivey, J. J. 1987. Complete Catalytic Oxidation of Volatile Organics. Ind. Eng. Chem. Res. 26: 2165-2180
  116. Maitra, A. M. 1993. Critical Performance Evaluation of Catalysts and Mechanistic Implications for Oxidative Coupling of Methane, Appl. Catal. A 104: 11-59
  117. Tang, X.; Zhang, B.; Li, Y.; Xu, Y.; Xin, Q.; and Shen, W. 2004. Carbon Monoxide Oxidation over CuO/CeO2 Catalysts. Catal. Today 93–95: 191-198
  118. Thomas, J.; and Thomas, W. 1997. Heterogeneous Catalysis, VCH, Weinheim, Germany 577
  119. Dow, W. P.; Wang, Y. P.; and Huang, T. J. 2000. TPR and XRD Studies of Yttria-doped Ceria/γ-Alumina-Supported Copper Oxide Catalyst. Appl. Catal. A 190: 25-34
  120. Kaspar, J.; and Fornasiero, P. in Trovarelli, A. (Editor). 2002. Catalysis by Ceria and Related Materials, Imperial College Press, London
  121. Kaspar, J.; Fornasiero, P.; and Hickey, N. 2003. Automotive Catalytic Converters: Current Status and Some Perspectives. Catalysis Today 77: 419-449
  122. Shelef, M.; Graham, G. W.; and McCabe, R. W. 2002. in Trovarelli A. (Editor), Catalysis by Ceria and Related Materials, Imperial College Press; London
  123. Sugiura, M., Ozawa, M.; Suda, A.; Suzuki, T.; and Kanazawa, T. 2005. Development of Innovative Three-Way Catalysts Containing Ceria–Zirconia Solid Solutions with High Oxygen Storage/Release Capacity. Bulletin of the Chemical Society of Japan 78: 752-767
  124. Kim, T.; Vohs, J.M.; and Gorte, R. J. 2006. Thermodynamic Investigation of the Redox Properties of Ceria-Zirconia Solid Solutions. Industrial & Engineering Chemistry Research 45: 5561-5565
  125. Zhou, G.; Shah, P. R.; Kim, T.; Fornasiero, P.; and Gorte, R. J. 2007. Oxidation Entropies and Enthalpies of Ceria–Zirconia Solid Solutions. Catalysis Today 123: 86-93
  126. Trovarelli, A.; Zamar F.; Llorca J.; de Lietenburg, Dolcetti G.; and Kisss J. T. 1997. Nanophase Fluorite-Structured CeO2-ZrO2 Catalyst Prepared by High-Energy Mechanical Milling. J of Catal. 169: 490-502
  127. Hori, C. E.; Permana H.; Ng K. Y. S.; Brenner A.; More K.; Rahmoeller K. M.; and Belton D. 1998. Thermal Stability of Oxygen Storage Properties in a Mixed CeO2-ZrO2 system. Applied Catalysis. Environmental 16: 105-117
  128. Boaro, M.; Vicario M.; de Leitenburg C.; Dolcetti G.; and Trovarelli A. 2000. The Dynamics of Oxygen Storage in Ceria-Zirconia Model Catalysts Measured by CO Oxidation under Stationary and Cycling Feed Stream Compositions. J of Catalysis 193: 338-347
  129. Boaro, M.; Trovarelli A.; Hwang J. H.; and Mason T. O. 2002. Electrical and Oxygen Storage/Release Properties of Nanocrystalline Ceria-Zirconia Solid Solutions. Solid State Ionics 147: 85-95
  130. Ma, L.; Luo, M.F.; and Chen, S. 2003. Redox Behaviour and Catalytic Properties of CuO/Ce0.8 Zr0.2 Catalysts. 242: 151-159
  131. Kozlov, A.; Kim D. H.; Yezerets A.; Andersen P.; Kung H.; and Kung M. 2002. Effect of Preparation Method and Redox Treatment on the Reducibility and Structure of Supported Ceria-Zirconia Mixed Oxide. Journal of Catalysis 209: 417-426
  132. Imanura, S.; Sawada, H.; Uemura, K.; and Ishida, S. 1988. Oxidation of Carbon Monoxide Catalyzed by Manganese Silver Composite Oxides. J. Catal. 109: 198–205
  133. Bera, P.; Priolkar, K. R.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro R.; and Lalla, N. P. 2002. Structural Investigation of Combustion Synthesized Cu/CeO2 Catalysts by EXAFS and other Physical Techniques: Formation of a Ce1-x CuxO2-d Solid Solution. Chem. Mater. 14: 3591
  134. Nico J. J.; Dekker, Johan A. A.; Hoorn, Sander Stegenga, Freek Kapteijn; and Moulijn, J.A. 1992. Kinetics of the CO oxidation by O2 and N2O over Cu-Cr/Al2O3. AIChE Journal 38: 385-396
  135. Rattan, G.; and Prasada, R. 2009. Effect of Preparation Method and Calcinations Temperature on Low Temperature CO Oxidation over CuO–CeO2 Catalysts, Paper presented in International Conference, Chemcon-2009, Dec. 27-30, Andhra University, Visakhapatnam, India
  136. Dockery, D. W.; Pope, C. A.; Xu, X; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G; and Speizer, F. E. 1993. An Association between Air Pollution and Mortality in Six U.S. cities. New Engl J Med 329: 1753–9
  137. Siegmann, K.; and Siegmann, H. C.1998. Molecular Precursor of Soot and Quantification of the Associated Health Risk. In: Mora´n-Lo´pez, editor. Current Problems in Condensed Matter. New York; Plenum Press, p. 143–60
  138. Setiabudi, A.; Makkee, M.; and Moulijn, J. A. 2003. An optimal NOx Assisted Abatement of Diesel Soot in an Advanced Catalytic Filter Design. Applied Catalysis B. Environmental 42: 35–45
  139. Farrauto, R. J.; and Voss, K. E. 1996. Monolithic Diesel Oxidation Catalysts. Applied Catalysis B. Environmental 10: 29-51
  140. Hongmei, An; Paul J.; and McGinn, 2006. Catalytic Behavior of Potassium Containing Compounds for Diesel Soot Combustion. Applied Catalysis B. Environmental 62: 46–56
  141. Larsson, P. O.; and Andersson, A. 1998. Complete Oxidation of CO, Ethanol, and Ethyl Acetate over Copper Oxide Supported on Titania and Ceria Modified Titania. J. Catal. 179: 72-89
  142. Flytzani-Stephanopoulos, M.; and Liu, W. 2002. “Catalytic Reduction of Sulfur Dioxide into Elemental Sulfur” Chapter in Encyclopedia of Catalysis Eds. by Horvath et al., John Wiley & Sons, Inc
  143. Geng, Q.; Guo, Q.; Cao, C.; Zhang, Y.; and Wang, L. 2008. Investigation into Photocatalytic Degradation of Gaseous Ammonia in CPCR. Ind. Eng. Chem. Res. 47: 4363-4368
  144. Lin, C. H.; Wu, Y. L.; Lai, C. H.; Watson, J. G.; and Chow, J. C. 2008. Air Quality Measurements from the Southern Particulate Matter Supersite in Taiwan. Aerosol Air Qual. Res. 8: 233-264
  145. Dravell, L. I.; Heiskanen, K.; Jones, J. M.; Ross, A. B.; Simell, P.; and Williams, A. 2003. An Investigation of Alumina-Supported Catalysts for the Selective Catalytic Oxidation of Ammonia in Biomass Gasification. Catal. Today 81: 681-692
  146. Liu, W.; and Flytzani-Stephanopoulos, M. 1996. Transition Metal-Promoted Oxidation Catalysis by fluorite Oxides: A Study of CO Oxidation over Cu-CeO2. The Chemical Engineering Journal 64: 283-294
  147. Avgouropoulos G.; Ioannides T.; Matralis H.; Batista J.; and Hocevar S. 2001. CuO-CeO2 Mixed Oxide Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen. Catalysis Letters 73: 33-40
  148. Wang, J. B.; Lin, S. C.; and Huang, T. J. 2002. Selective CO Oxidation in Rich Hydrogen Over CuO/Samaria-Doped Ceria. Applied Catalysis A. General. 232: 107-120

Last update:

No citation recorded.

Last update:

No citation recorded.