BibTex Citation Data :
@article{BCREC7172, author = {Marwa Shalaby and Shadia El-Rafie}, title = {Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {10}, number = {1}, year = {2015}, keywords = {Struvite; Solubility Constant; Reaction Kinetics; Crystallization, Human Urine}, abstract = { Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O) is a white, crystalline phosphate mineral that can be used as a bio-available fertilizer. The main objective of this research is to indicate the most important operating parameters affecting struvite precipitation by means of chemical reaction kinetics. The present study explores struvite precipitation by chemical method under different starting molar ratios, pH and SSR. It is shown that an increase of starting Mg: PO4: NH4 with respect to magnesium (1.6:1:1) strongly influences the growth rate of struvite and so the efficiency of the phosphate removal. This was attributed to the effect of magnesium on the struvite solubility product and on the reached supersaturation Super Saturation Ratio at optimum starting molar ratio and pH. It was also shown, by using chemical precipitation method that the determined Super Saturation Ratio (SSR) values of struvite, at 8, 8.5, 9, 9.5 and 10 are 1.314, 4.29, 8.89, 9.87 and 14.89 respectively are close to those presented in the literature for different origins of wastewater streams. The results show that SSR , pH, and starting molar ratio strongly influences the kinetics of precipitation and so phosphorous removal to reach 93% removal percent , 5.95 mg/lit as a minimum PO4 remained in solution, and 7.9 gm precipitated struvite from feed synthetic solution of 750 ml . The product was subjected to chemical analysis by means of EDIX-FTIR, SEM and XRD showing conformity with published literature. First-order kinetics was found to be sufficient to describe the rate data. The rates increased with increasing pH and so SSR and the apparent rate constants for the reaction were determined. © 2015 BCREC UNDIP. All rights reserved Received: 28th July 2014; Revised: 12nd December 2014; Accepted: 25th December 2014 How to Cite : Shalaby, M.S., El-Rafie, Sh. (2015). Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study. Bulletin of Chemical Reaction Engineering & Catalysis , 10 (1): 88-97. (doi:10.9767/bcrec.10.1.7172.88-97) Permalink/DOI : http://dx.doi.org/10.9767/bcrec.10.1.7172.88-97 }, issn = {1978-2993}, pages = {88--97} doi = {10.9767/bcrec.10.1.7172.88-97}, url = {https://ejournal.undip.ac.id/index.php/bcrec/article/view/7172} }
Refworks Citation Data :
Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O) is a white, crystalline phosphate mineral that can be used as a bio-available fertilizer. The main objective of this research is to indicate the most important operating parameters affecting struvite precipitation by means of chemical reaction kinetics. The present study explores struvite precipitation by chemical method under different starting molar ratios, pH and SSR. It is shown that an increase of starting Mg: PO4: NH4 with respect to magnesium (1.6:1:1) strongly influences the growth rate of struvite and so the efficiency of the phosphate removal. This was attributed to the effect of magnesium on the struvite solubility product and on the reached supersaturation Super Saturation Ratio at optimum starting molar ratio and pH. It was also shown, by using chemical precipitation method that the determined Super Saturation Ratio (SSR) values of struvite, at 8, 8.5, 9, 9.5 and 10 are 1.314, 4.29, 8.89, 9.87 and 14.89 respectively are close to those presented in the literature for different origins of wastewater streams. The results show that SSR , pH, and starting molar ratio strongly influences the kinetics of precipitation and so phosphorous removal to reach 93% removal percent , 5.95 mg/lit as a minimum PO4 remained in solution, and 7.9 gm precipitated struvite from feed synthetic solution of 750 ml . The product was subjected to chemical analysis by means of EDIX-FTIR, SEM and XRD showing conformity with published literature. First-order kinetics was found to be sufficient to describe the rate data. The rates increased with increasing pH and so SSR and the apparent rate constants for the reaction were determined. © 2015 BCREC UNDIP. All rights reserved
Received: 28th July 2014; Revised: 12nd December 2014; Accepted: 25th December 2014
How to Cite: Shalaby, M.S., El-Rafie, Sh. (2015). Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1): 88-97. (doi:10.9767/bcrec.10.1.7172.88-97)
Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7172.88-97
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as: electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Bulletin of Chemical Reaction Engineering and Catalysis journal and Department of Chemical Engineering Diponegoro University.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis (BCREC) are sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Agreement Form can be downloaded here: [Copyright Transfer Form BCREC 2016] The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax : Assoc. Prof. Dr. I. Istadi (Editor-in-Chief) Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275 Telp.: +62-24-7460058, Fax.: +62-24-76480675 E-mail: bcrec@live.undip.ac.id