A Review on Diesel Soot Emission, its Effect and Control

*R. Prasad  -  Department of Chemical Engineering & Technology, Banaras Hindu University, Varanasi 221005, India
Venkateswara R. Bella  -  Department of Chemical Engineering & Technology, Banaras Hindu University, Varanasi 221005, India
Received: 20 Jan 2011; Published: 20 Jan 2011.
Open Access
Citation Format:
Abstract

The diesel engines are energy efficient, but their particulate (soot) emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM); diesel particulate filters (DPFs), summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations) as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC) are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. ©2010 BCREC UNDIP. All rights reserved

(Received: 2nd June 2010, Revised: 17th June 2010; Accepted: 24th June 2010)

[How to Cite: R. Prasad, V.R. Bella. (2010). Review on Diesel Soot Emission, its Effect and Control. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2): 69-86. doi:10.9767/bcrec.5.2.794.69-86]

[DOI: http://dx.doi.org/10.9767/bcrec.5.2.794.69-86 || or local:   http://ejournal.undip.ac.id/index.php/bcrec/article/view/794 ]

Cited by in: ACS 1 |

Keywords: Diesel soot emission; Diesel particulate filter; Active regeneration; Passive regeneration; Diesel oxidation catalyst

Article Metrics:

  1. Stratakis, G.A. 2004. Experimental investigation of catalytic soot oxidation and pressure drop characteristics in wall flow diesel particulate filters, Ph.D. Thesis, University of Thessaly, Greece
  2. Seaton, A.; MacNee, W.; Donaldson K.; and Godden, D. 1995. Particulate air pollution and acute health effects. Lancet 345: 176-178
  3. Sydbom, A.; Blomberg, A.; Parnia, S.; Stenfors, N.; Sandstrom, and T.; Dahlen, S E. 2001. Health effects of diesel exhaust emissions. Eur respir J 17: 733-746
  4. omers, C.M.; McCarry, B.E.; Malek, F.; and Quinn, J.S. 2004 Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304: 1008–1010
  5. Saracco, G.; Fino, D. 2001. Advances in environmental and Pollution Control Materials. Mrs Singapore Publisher, 1: 273-285
  6. Ramanathan, V. 2007. Global dimming by air pollution and global warming by greenhouse gases. Nucleation and Atmospheric Aerosols 6: 473-483
  7. Baedecker, P.A; Reddy, M.M.; Reimann, K.J.; and Sciammarella, C.A. 1992. Effects of acidic deposition on the erosion of carbonate stone - Results from the U.S. National acid precipitation assessment program (NAPAP). Atmos. Environ. B 26: 147-158
  8. Simao, J.; Ruiz-Agudo, E.; and Rodriguez-Navarro, C. 2006. Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmospheric Environment 40: 6905–6917
  9. Subramanian, R.; Winijkul, E.; C. Bond, T.; Thiansathit, W.; Kim Oanh, N.T.; Paw-Armart, I.; and Duleep, K. G. 2009. Climate-Relevant Properties of Diesel Particulate Emissions: Results from a Piggyback Study in Bangkok, Thailand. Environ. Sci. Technol. 43: 4213-4218
  10. Lloyd, A.C.; and T.A. Cackette. 2001.Diesel Engines: Environmental Impact and Control, J. Air & Waste Manage. Assoc. 51: 809-847
  11. Burtscher, H. 2005. Physical characterization of particulate emissions from diesel engines: A review. Aerosol Science 36: 896-932
  12. Maricq, M.M. 2007.Chemical characterization of particulate emissions from diesel engines: A review, Aerosol Sci. 38: 1079-1118
  13. Kittelson, D.B.1998. Engines and nanoparticles: A review. J. Aerosol Sci. 29: 575-588
  14. Neeft, J.P.A.; Makkee, M.; and Moulijn, J.A. 1996. Review article: Diesel particulate emission control. Fuel Processing Technol. 47: 1-69
  15. Walker, A.P. 2004. Controlling particulate emissions from diesel vehicles: A Review. Topics in Catal 28:165-170
  16. Fino, D. 2007. Diesel emission control: A review of catalytic filters for particulate removal. Sci. & Technol. of Adv. Materials 8: 93-100
  17. Fino, D.; Specchia, V. 2008. Review open issues in oxidative catalysis for diesel particulate abatement. Powder Technol. 180: 64-73
  18. Schnakenberg G.H.; Bugarski, A.D. 2002. Review of technology available to the underground mining industry for control of diesel emissions, DHHs (NIOSH) Publication. Information Circular 9462: 1-58
  19. Corro, G. 2002. Sulfur impact on diesel emission control - A Review. React. Kinet. Catal. Lett. 75:89-106
  20. Stamatelos, A.M. 1997. A review of the effect of particulate traps on the efficiency of vehicle diesel engines. Energy Comers. Mgmt. 38:83-99
  21. Sahoo, B.B.; Sahoo, N.; Saha, U.K. 2009. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines - A critical review. Renewable and Sustainable Energy Reviews 13:1151-1184
  22. Kittelson, D.B.; Arnold, M.; Watts W.F. 1999. Review of diesel particulate matter sampling methods, a report on Ph.D. Thesis, Univ. of Minnesota, USA
  23. Stanmore, B.R.; Brilhac, J.F.; Gilot, P. 2001. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 39: 2247–2268
  24. Neeft, J.P.A. 1995. Catalytic oxidation of soot: Potential for the reduction of diesel particulate emissions, Ph.D. Thesis, Delft University of Technology, Delft
  25. Jelles, S.J. 1999. Development of catalytic systems for diesel particulate oxidation, Ph.D. Thesis, Delft University of Technology, Delft
  26. Crua, C. 2002. Combustion Processes in a Diesel Engine, Ph.D. Thesis, University of Brighton, United Kingdom
  27. Setiabudi, A. 2002. Catalytic filter development for the oxidation of diesel soot with NO2, Ph.D. Thesis, Delft University of Technology, Delft
  28. [Williams, S. 2008. Surface intermediates, mechanism, and reactivity of soot oxidation, Ph.D. Thesis, University of Toronto, Canada
  29. Yoshihide, T. 2009. Exhaust emission control device. US Patent 20090266061
  30. Rolf, B.; Peter, H. 2010. Method for providing ammonia for the selective catalytic reduction of nitrogen oxides and corresponding device. US Patent 20100037598
  31. Tonetti, M.; lanfranco, E. 2009. EGR control system. US Patent 20090205617
  32. Zhang, W.; angelo, T.; Method for regenerating a diesel particulate filter. US Patent 20090235649
  33. Gonze, E.V.; ament, F. 2007. electrical diesel particulate filter (DPF) regeneration. US Patent 20070044460
  34. Collins, T.; Adam, H.T.; Erich, A.K.; John, R. 2009. Regeneration of diesel particulate filters. US Patent 20090241513
  35. Haoran, H.; mohan, R.; Subbaraya, B.; Karen , E.; Mccarthy, J.; James , E.; Reuter, J.; singh, W.; Vishal, K.; Wayne Scott, B.; Fred Joseph, B.; Dawn, M. 2006. Integrated NOx and DPM reduction devices for the treatment of emissions from internal combustion engines, US Patent 20060179825
  36. Dehart, T.; Ronald, C. 2010. Method and Apparatus For Controlling Exhaust Temperature of A Diesel Engine, US Patent 20100043430
  37. Katafuchi, T. 2003. Additive for diesel particulate filters, US Patent 20030182847
  38. Manson, I. 2010. Self-regenerating diesel exhaust particulate filter and material, US Patent 6013599
  39. Hall-Roberts, V. J.; Hayhurst, A.N.; Knight, D. E.; Taylor, S. G. 2000. The Origin of Soot In Flames: Is The Nucleus An Ion. Combustion And Flame 120:578–584
  40. Mayer, A.;Egli, H.; Burtscher, J.; Czerwinski,T.; Gehrig, D. 1995. Particle size distribution downstream traps of different design. SAE Paper No. 950373
  41. Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; and Donaldson, K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175:191–199
  42. Rodt, S. 2002. Diesel Engine Emission Reduction Conference, San Diego
  43. McClellan, R.O. 1989. Health Effects of Exposure to Diesel Exhaust Particles; Ann. Rev. Pharmacol. Toxicol. 27: 279-300
  44. Seinfeld, J. H. 1975: Air pollution: Physical and chemical fundamentals, McGraw-Hill, Inc., New York
  45. Wichmann, H.E; Spix, C.; Tuch, T.; Wölke, G.; Peters, A.; Heinrich, J.; Kreyling, W.G.; Heyder, J. 2000. Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany-Part I, Role of Particle Number and Particle Mass; HEI Research Health Effects Institute: Cambridge, MA
  46. Zhua, L.; Yu, J.; Wang, X. 2007.Oxidation treatment of diesel soot particulate on CexZr1−xO2, J. Hazard. Mater. 140: 205-210
  47. Oberdörster, G.; Gelein, R.; Ferin, J.; Weiss, B. 1995. Association of Particulate Air Pollution and Acute Mortality: Involvement of Ultrafine Particles. Inhal. Toxicol. 7 (1): 111-124
  48. Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Kaz, I.; Thurston, G. D. 2002. Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. Journal of the American Medical Association, 287: 1132-1141
  49. Avol, E.L.; Gauderman, W.J.; Tan, S.M.; London, S.J.; Peters. J.M. 2001. Respiratory effects of relocating to areas of differing air pollution levels. American Journal of Respiratory and Critical Care Medicine. 164: 2067-2072
  50. Kagawa, J. 2002. Health effects of diesel exhaust emissions - a mixture of air pollutants of worldwide concern. Toxicology 181-182: 349-353
  51. Xue-Jin, Y.; Shafer, R.; Ma, Jane Y.C., Antonini, J.M., Weissman, David D., Siegel, Paul D., Barger, Mark W., Roberts, Jenny R. and Ma, Joseph K.H. 2002. Alteration of pulmonary immunity to Listeria monocyto-genes by diesel exhaust particles (DEPs). Environ Health Perspectives 110: 11-23
  52. Grantza, D.A.; Garnerb, J.H.B.; Johnsonc, D.W.2003. Ecological effects of particulate matter. Environ International 29: 213-239
  53. Arimoto, R. 1989. Atmospheric Deposition of Chemical Contaminants to the Great Lakes. J. Great Lakes Res.15:339-356
  54. Schroder,J.; Eelsch-Pausch, K.; McLachlan, M.S. 1997. Measurement of Atmospheric Deposition of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Dibenzofurans (PCDFs) to a Soil. Atmos. Environ. 31: 2983-2989
  55. Davis, C.A. 2000. Annual Progress Report Water Quality, Air Quality and Forest Health-Research, Monitoring, and Modeling; University of California
  56. Miller, E.K.; Panek, J.A.; Friedland, A.J.; Kadlecek, J.A.; Mohnen. V.A. 1993. Atmospheric Deposition to a High-Elevation Forest at Whiteface Mountain, New York, USA. Tellus 45B (3): 209-227
  57. Simcik, M.E.; Eisenreich, S.J.; Golden, K.A.; Liu, S.P.; Lipiatou, E.; Swachhamer, D.L.; Long, D.T. 1996.Atmospheric Loading of Polycyclic Aromatic Hydrocarbons to Lake Michigan as Recorded in the Sediments; Environ. Sci. Technol. 30: 3039-3046
  58. Wik, M.; Renberg, I. 1991.Recent Atmospheric Deposition in Sweden of Carbonaceous Particles from Fossil-Fuel Combustion Surveyed Using Lake Sediments. Ambio 20: 289-292
  59. El-Fadel, M.; Hashisho, Z. 2000. Vehicular Emissions and Air Quality in Roadway Tunnels. Transportation Res Part D (9): 355-372
  60. Riederer, J.1974. Pollution Damage to Works of Art. Experientia, Suppl. 20:73-85
  61. Pitchford, M.L.; Malm, W.C. 1994. Development and Applications of a Standard Visual Index. Atmos. Environ. 28 (5): 1049-1054
  62. Watson, J.G.; Chow, J.C. 1994.Clear Sky Visibility as a Challenge for Society; Annu. Rev. Energy Environ. 19: 241-266
  63. A.S. Ansari, S. N Pandis, 2000 Water Absorption by Secondary Organic Aerosol and Its Effect on Inorganic Aerosol Behavior. Environ. Sci. Technol. 34 (1)71-77
  64. Ramanathan, V. 2001. The Indian Ocean Experiment: An Integrated Assessment of the Climate Forcing and Effects of the Great Indo-Asian Haze. J. Geophys. Res. Atmospheres 106: 371-399
  65. Lahaye, J.; Boehm, P.; Chambrion P.; Ehrburger, P. 1996. Influence of cerium oxide on the formation and oxidation of soot. Combust Flame 104: 199-207
  66. Kulkarni, A.; Rathore, B.P.; Mahajan, S.;and Mathu, P. 2005. Alarming Retreat of Parbati Glacier, Beas Basin, Himachi Pradesh. Current Science 88:1844-1850
  67. Roberts,D.L.; Jones, A. 2004. Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res. 109
  68. Hansen, J.;Sato M.; Ruedy, R.; Lacis, A.; and Oinas, V. 2000. Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. U.S.A. 97(18): 9875–80
  69. Albrecht, B.1989.Aerosols, cloud microphysics, and fractional cloudiness. Science 245: 1227-1239
  70. Van Setten, B.A.A.L.; Makkee, M.; Moulijn, J.A. 2001. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust, Catal. Rev. 43 (4) :489-564
  71. ECMA-Indian Emission Standards. 2010. http://www.ecmaindia.in
  72. Bauner, D.; Laestadius, S.; Iida, N. 2009. Evolving technological systems for diesel engine emission control: balancing GHG and local emissions Norimasa Iida. Clean Techn Environ Policy 11: 339-365
  73. Dieselnet Diesel Emissions Online. 2010. http://www.dieselnet.com
  74. Cooper, B.J.; Roth, S.A. 1991. Flow-Through Catalysts for Diesel Engine Emissions, Platinum Metals Rev. 35: 178-187
  75. Kuki, T.; Miyairi, Y.; Kasai Y.; Miyazaki, M.; Miwa, S.2004. Study on Reliability of Wall-Flow-Type Diesel Particulate Filter. SAE, 2004-01-0959
  76. Ohno, K.; Taoka, N.; Furuta, T.; Kudo, A.; Komori, T.2002. Characterization of High Porosity SiC-DPF. SAE, 2002-01-0325
  77. Farrauto, R.J.; Voss, K.E. 1996. Mono lithic Diesel Oxidation Catalysts. Applied Catalysis B: Environ. 10: 29-51
  78. Shirk, R.; Bloom, R.; Kitahara, Y.; Shinzawa, M. 1995. Fiber Wound Electrically Regenerable Diesel Particulate Filter Cartridge for Small Diesel Engines, SAE Paper No. 950153
  79. Niura,Y.; Ohkubo, K.; Yagi, K. 1986. Study on Catalytic Regeneration of Ceramic Diesel Particulate Filter, SAE Paper No. 860290
  80. Pattas, K.N.; Stamatelos, A.M.; Kougianos, K.N.; Koltsakis, G.C.; Pistikopoulos, P.K. 1995. Trap Protection By Limiting A/F Ratio During Regeneration, SAE Paper no. 950366
  81. Dettling.; Joseph C.; Skomoroski, Robert. 1992. Catalyzed diesel exhaust particulate filter. US Patent 5100632
  82. Domesle, Rainer, Volker, Herbert, Koberstein, Edgar, Pletka, Hans-dieter, 1984. Catalyst for reducing the ignition temperature of diesel soot. US Patent 4477417
  83. Salvat, P.; Marez, G.; Belot. 2000. Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine, SAE paper 2000-01-0473
  84. Babu K.V.R.; Dias, C.; Waje, S. 2009. Proc. Technology solutions to meet diesel particulate emission legislation for Euro IV and V in Asia. International conference on emission control technologies: To improve ambient air quality - path forward for India. Nov. 2009, 395-416
  85. Allansson, R.; Blakeman, P.G.; Cooper, B.J.; Hess, H.; Silcock, P.J.; and Walker, A.P. 2002. Optimizing the low temperature performance and regeneration efficiency of the continuously regenerating diesel particulate filter (Cr-Dpf) system. SAE paper 2002–01–0428
  86. Setiabudi, A.; Makkee, M.; and Moulijn, J.A. 2003. An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design. Appl. Catal. B 42 (1): 35–45
  87. Setiabudi, A.; Makkee, M.; and Moulijn, J.A. 2004. An optimal usage of NOx in a combined Pt/ceramic foam and a wall-flow monolith filer for an effective NOx assisted soot oxidation. Topics Catal. 30/31: 305-308
  88. Cooper, B.J.; Thoss, J.E. 1989. Role of NO in Diesel Particulate Emission Control. SAE Paper 890404
  89. Hawker, P.; Myers, N.; Hu¨thwohl, G.; Vogel, H.Th.; Bates, B.; Magnusson, L.; Bronnenberg, P. 1997. Experience with a New Particulate Trap Technology in Europe. SAE paper 970182
  90. Hawker, P.; Hu¨thwohl, G.; Henn, J.; Koch, W.; Luders, H.; Lu¨ers, B.; Stommel, P. 1998. Effect of a Continuously Regenerating Diesel Particulate Filter on Non-regulated Emissions and Particle Size Distribution. SAE paper 980189
  91. Allansson, R.; Cooper, B.J.; Thoss, J.E.; Uusima¨ki, A.; Walker, A.P.; Warren, J.P. 2000. European Experience of High Mileage Durability of Continuously Regenerating Diesel Particulate Filter Technology. SAE paper 2000-01-0480
  92. Levendis, Y.; Larsen, C. 1999.Use of Ozone-Enriched Air for Diesel Particulate Trap Regeneration. SAE paper 1999-01-0114
  93. Huang,Y.; Zhongyuan, D.; and Amiram, B. 2004. Catalyzed diesel particulate matter with improved thermal stability. US Patent 2004 /0116285 A1, Süd-Chemie
  94. Vincent M. W.; Richards P.J.; Catterson D. J. 2003. A novel fuel borne catalyst dosing system for use with a diesel particulate filter 112, SAE transactions ISSN 0096-736X: 212-224
  95. Johnson, J.H.; Bagley, S.T.; Gratz, L.; Leddy, D. 1994. A Review of Diesel Particulate Control Technology and Emission Effects. SAE paper No. 940233
  96. Allnsson, R.;Goersmann, C.; Lavenius, M.; Phillips, P.; Uusimaki,A.J.; and Walker, A.P. 2004. The Development and In-Field Performance of Highly Durable Particulate Control Systems. SAE paper 2004-01-0072
  97. Campenon, T.; Wouters, P.; Blanchard, G.; Macaudiere, P.; and Seguelong, T. 2004. Improvement and Simplification of Dpf System Using a Ceria-Based, Fuel-Borne Catalyst for Diesel Particulate Filter Regeneration in Serial Applications. SAE paper 2004-01-0071
  98. Neeft, J.P.A.; Makkee, M. and Moulijn, J.A. 1996. Metal oxides as cat- alysts for the oxidation of soot, Chem. Eng. J. 64: 295-302
  99. Van Setten, B.A.A.L.; Schouten, J.M.; Makkee, M.; Moulijn, J.A. 2000. Realistic contact for soot with an oxidation catalyst for laboratory studies. Appl. Catal. B 28: 253-257
  100. Dang,Z.; Y. Huang.; and Bar-Ilan, A. 2006. Oxidation catalyst on a substrate utilized for the purification of exhaust gases. US 2006/0211569 A1
  101. Neri, G.; Bonaccorsi, L.; Donato, A.; Milone, C.; Musolino, M.G.;and Visco, A.M. 1997. Catalytic combustion of diesel soot over metal oxide catalysts. Appl. Catal. B 11:217-231
  102. Cooper, B.J.; Jung, H.J. 1990. Treatment of diesel exhaust gases, Thoss JE US 4902487
  103. Setiabudi, A.; Setten, B.A.A.L.V.; Makkee, M.; and Moulijn, J.A. 2002. The influence of NOx on soot oxidation rate: molten salt versus platinum. Appl. Catal. B 35: 159-166
  104. Dettling, J.C.; and R. Skomoroski. 1992. Catalyzed diesel exhaust particulate filter. US Patent 5,100,632, Engelhard Corporation
  105. Uchisawa, J.O.; Obuchi, A.; Zhao, Z.; and Kushiyama, S. 1998. Carbon oxidation with platinum supported catalysts. Appl. Catal. B 18: 183-187
  106. Uchisawa, J.O., A. Obuchi, R. Enomoto, S. Liu, T. Nanba, and S. Kushiyama, 2000. Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Appl. Catal. B 26, 17-24
  107. Uchisawa, J.O.; Obuchi, A.; Enomoto, R.; Xu, J.; Nanba, T.; Liu, S.; and Kushiyama, S. 2001. Oxidation of carbon black over various Pt/MOx/SiC catalysts. Appl. Catal. B 32: 257-268
  108. Uchisawa, J.O.; Obuchi, A.; Wang, S.; Nanba, T.; and Ohi, A. 2003. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl. Catal. B 43: 117-129
  109. Uchisawa, J.O.; Wang, S.; Nanba, T.; Ohi, A.; and Obuchi, A. 2003. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Appl. Catal. B 44:207-215
  110. Kim, M.R.; Kim, D.H.; and Woo, S.I. 2003. Effect of V2O5 on the catalytic activity of Pt-based diesel oxidation catalyst. Appl. Catal. B (45): 269-279
  111. Liu, S.; Obuchi, A.; Oi-Uchisawa, J.; Nanba, T.; and Kushiyama, S. 2001. Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5. Appl. Catal. B 30: 259-265
  112. Twigg, M. V. 2003. System and Method for Purifying Exhaust Gases. US patent 6,557,340
  113. Davies, M.J.; Blaikley, D.C.W.; Jorgensen, N.; Webster, D.E.; and Wilkins, A.J.J. 1993. Catalytic control of diesel particulate emissions. Worldwide engine emission standards and how to meet them. London, 111-121
  114. Tarasov, B.P. ; Muradyan, V.E.; Shul’ga, Y.M. ; Krinichnaya, E.P.; Kuyunko, N.S.; Efimov, O.N. ; Obraztsova, E.D.; Schur, D.V. ; Maehlen, J.P. ; Yartys, V.A.; Lai, H.J. 2003. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi2 catalysts. Carbon 41:1357-1364
  115. Shangguan, W.F.; Teraoka, Y.; Kagawa, S. 1998. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B 16:149-154
  116. Nejar, N.; Garcıa-Cortes, J.M. ; Salinas-Martı´nez de Lecea, C. ; Illa´n-Gomez, M.J. 2005. Bimetallic catalysts for the simultaneous removal of NOx and soot from diesel engine exhaust: A preliminary study using intrinsic catalysts. Catal. Commun. 6:263-267
  117. Milt, V.G.; Querini, C.A.; Miro´ , E.E. ; Ulla, M.A. 2003. Abatement of diesel exhaust pollutants: NOx adsorption on Co, Ba,K/CeO2 catalysts. J. Catal. 220:424-432
  118. Bera, P.; Aruna, S.T.; Patil, K.C.; and Hegde, M.S. 1999. Studies on Cu/CeO2: A New NO Reduction Catalyst. J. of Catal. 186: 36-44
  119. Ciambelli, P.; Palma, V.; Russo, P.; Vaccaro, S.; Mol. J. 2003. Alumina Supported Co-K-Mo Based Catalytic Material for Diesel Soot. Appl. Catal. A 204, 673
  120. Neri, G.; Rizzo, G.; Bonaccorsi, L.; Milone, C.; Galvagno, S. 2005. Scale-up of sulphur resistant promoted-vanadium oxide catalysts for self-regenerating catalytic filters in off-road diesel engines and domestic apparatus. Catal. Today 100: 309-313
  121. Saracco, G.; Badini, C.; Russo, N.; Specchia, V. 1999. Development of catalysts based on pyrovanadates for diesel soot combustion. Appl. Catal. B 21:233-242
  122. Bueno-Lo´pez, A.; Krishna, K.; Makkee, M.;. Moulijn, J.A.2005. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 230: 237-248
  123. Russo, N.; Fino, D.; Saracco, G.; Specchia, V. 2005. Studies on the redox properties of chromite perovskite catalysts for soot combustion. J. Catal. 229: 459-469
  124. Fino, D.; Specchia, V. 2004. Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap. Chem. Eng. Sci. 59: 4825-4831
  125. Milt, V.G.; Querini, C.A. ; Miro´ , E.E. 2003. Thermal analysis of K(x)/La2O3, active catalysts for the abatement of diesel exhaust contaminants. Thermochim. Acta 404: 177-186
  126. Fino, D.; Russo, N.; Saracco, G. ; Specchia, V. 2003.The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. J. Catal. 217: 367-375
  127. Teraoka, Y.; Kanada, K.; Kagawa, S. 2001. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl. Catal. B 34: 73-78
  128. Fino,D.; Fino, P.; Saracco, G.; Specchia, V. 2003. Studies on kinetics and reactions mechanism of La2−xKxCu1−yVyO4 layered perovskites for the combined removal of diesel particulate and NOx. Appl. Catal. B 43: 243-259
  129. Harrison, P.G.; Ball, I.K.; Daniell, W.; Lukinskas, P.; Ce´spedes, M.; Miro´, E.E.; Ulla, M.A. 2003. Cobalt catalysts for the oxidation of diesel soot particulate. Chem. Eng. J. 95: 47-55
  130. Watabe, Y.; Yamada, C.; Irako, K.; Murakami, Y. 1983. Application of catalytic materials for diesel exhaust emission control. European Patent 0092023
  131. Ciambelli, P.; Palma, V.; Russo, P.; Vaccaro, S. 1999. The effect of NO on Cu/V/K/Cl catalysed soot combustion. Appl. Catal. B 22: L5-L10
  132. Mul, G.; Kapteijn, F.; Moulijn, J.A. 1997. Catalytic oxidation of model soot by metal chlorides. Appl. Catal. B 12: 33-47
  133. Querini, C.A.; Ulla, M.A.; Requejo, F.; Soria, J.; Sedra´n, U.A.; Miro´, E.E. 1998. Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co,K/MgO catalysts. Appl. Catal. B 15: 5-19
  134. Badini, C.; Saracco, G.; Specchia, V. 1998. Combustion of carbon particulate catalysed by mixed potassium vanadates and KI. Catal. Lett. 55: 201-206
  135. Ahlstrom, A.F.; Odenbrand, C.U.I. 1990. Combustion of soot deposits from diesel engines on mixed oxides of vanadium pentoxide and cupric oxide. Appl. Catal. 60: 157-172
  136. Van Setten, B.A.A.L.; Schouten, J.M.; Makkee, M.; Moulijn, J.A. 2000. Realistic contact for soot with an oxidation catalyst for laboratory studies. Appl. Catal. B 28: 253-257
  137. Aneggi E.; Llorca J.; Leitenburg, C.; Dolcetti G.; Trovarelli A. 2009. Soot combustion over silver-supported catalysts. Appl. Catal. B 91: 489–498
  138. Xiaoyuan, J.; Liping, L.; Guanghui, D.; Yingxu, C.; and Xiaoming, Z. 2004. The Active Species and Catalytic Properties of CuO/CeO2-TiO2 Catalysts for NO+CO Reaction. J of Mater Science 39: 4663-4667
  139. Ileana D.; Lick, A.; Carrascull, L.; Ponzi, M. I.; and Esther N.; Ponzi. 2008. Zirconia- Supported Cu-KNO3 Catalyst: Characteriz-ation and Catalytic Behavior in the Catalytic Combustion of Soot with a NO/O2 Mixture. Ind. Eng. Chem. Res. 47: 3834–3839
  140. Sui, L.; Liyan, Yu. 2008. Diesel soot oxidation catalyzed by Co-Ba-K catalysts: Evaluation of the performance of the catalysts. Chem Eng Journal 42: 327-330
  141. Sui, L.; Liyan Yu, and Zhang, Y. 2007. Catalytic Combustion of Diesel Soot on Co-Sr-K Catalysts. Energy & Fuels 21:1420-1424
  142. Dhakad, M.; Amish Joshi, G.; Rayalu, S.; Tanwar, P.; Bassin J. K.; Kumar, R.; Lokhande, S.; Subrt, J.; Mitsuhashi, T.;Labhsetwar, N. 2009. Alumina Supported Co-K-Mo Based Catalytic Material for Diesel Soot Oxidation. Top Catal 52: 2070-2075
  143. Dhakad, M.; Fino, D.; Rayalu, S. S.; Kumara, R.; Watanabe, A.; Haneda, H.; Devottaa, S.; Mitsuhashic, T.; and Labhsetwar, N. 2007. Zirconia supported Ru-Co bimetallic catalysts for diesel soot oxidation. Catalysis 42-43: 273-276
  144. Dhakad1, M.; Rayalu1, S.; Subrt, J.; Bakardjieva, S.; Mitsuhashi, T.; Haneda, H.; Devotta1 S.; and Labhsetwar1, N. 2007. Diesel soot oxidation on titania supported ruthenia catalysts. Current Science 92: 1125-1128
  145. Shimizu, K-I.; Kawachi, H.; Satsuma, A. 2010. Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B 96:169-175
  146. Białobok, B.; Trawczynski, J.; Rzadki , T.; Mista, W.; Zawadzki, M. 2007. Catalytic combustion of soot over alkali doped SrTiO3. Catalysis Today 119: 278-285
  147. Carraseull, l.A.; lick, l.D.; Ponzi, M. I.; and Ponzi, E.N. 2008. Diesel soot combustion KNO3 and KOH catalysts supported on zirconia. React Kinet. Catal. Lett. 94: 91-98
  148. Liang, Q.; Wu,X.; Weng,D.; Xu, H. 2008. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today 139: 113-118
  149. Wu, X.; Lin, F.; Weng, D.; Li, J. 2008. Simultaneous removal of soot and NO over thermal stable Cu-Ce-Al mixed oxides. Catalysis Communications 9: 2428-2432
  150. Shumin, S.; Wenling, C.; Weishen,Y. 2009. Ce-Al Mixed Oxide with High Thermal Stability for Diesel Soot Combustion. Chinese J. Catal. 30: 685-689
  151. Wu, X.; Liang, Q.; Weng, D.; Lu, Z. 2007. The catalytic activity of CuO–CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catal. Commun. 8: 2110-2114
  152. Aneggi, E.; Leitenburg, C.D.; Dolcetti, G.; Trovarelli, A. 2006. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catalysis Today 114:40-47
  153. Wu, X.; Liu, D.; Li, K.; Li, J.; Weng, D. 2007. Role of CeO2-ZrO2 in diesel soot oxidation and thermal stability of potassium catalyst. Catalysis Commun 8: 1274-1278
  154. Dhakad , M.; Mitshuhashi , T.; Rayalu , S.; Doggali , P.; Bakardjiva , S. ; Subrt , J.; Fino, D.; Haneda, H.; Labhsetwar, N. 2008. Co3O4–CeO2 mixed oxide-based catalytic materials for diesel soot oxidation. Catalysis Today 132: 188-193
  155. Dhakad, M.; Rayalu, S. S.; Kumar, R.; Doggali, P.; Bakardjieva, S.; Subrt, J.; Mitsuhashi, T.; Haneda, H.; Labhsetwar, N. 2008. Low Cost, Ceria Promoted Perovskite Type Catalysts for Diesel Soot Oxidation. Catal Lett 121:137–143
  156. Atribak, I.; Such-Basanez, I.; Bueno-Lopez , A.; Garcia-Garcia, A. 2007. Comparison of the catalytic activity of MO2 (M = Ti, Zr, Ce) for soot oxidation under NOx/O2. Journal of Catalysis 250:75-84
  157. Li, Z.; Meng, M.; Li, Q.; Xie, Y.; Hu, T.; Zhang J. 2010. Fe-substituted nanometric La0.9K0.1Co1-xFexO3-δ perovsite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal soot and NOx. Chemical Engineering Journal 164: 98-105

Last update: 2021-03-06 02:13:22

No citation recorded.

Last update: 2021-03-06 02:13:23

  1. Sensitivity of nitrate aerosol production to vehicular emissions in an urban street

    Kim M.. Atmosphere, 10 (4), 2019. doi: 10.3390/ATMOS10040212
  2. Preliminary study on the performance of biomorphic silicon carbide as substrate for diesel particulate filters

    Orihuela P.M.. Thermal Science, 22 (5), 2018. doi: 10.2298/TSCI171227214O
  3. Development of highly efficient double-substituted perovskite catalysts for abatement of diesel soot emissions

    Mishra A.. Clean Technologies and Environmental Policy, 17 (8), 2015. doi: 10.1007/s10098-015-0976-z
  4. Analysis of real driving gaseous emissions from light-duty diesel vehicles

    Chong H.. Transportation Research Part D: Transport and Environment, 65 , 2018. doi: 10.1016/j.trd.2018.09.015
  5. The effect of advancing injection timing on combustion characteristics using stationary diesel engine with 30% water in diesel emulsion fuel

    Sudarmanta B.. AIP Conference Proceedings, 127 , 2019. doi: 10.1063/1.5138298
  6. Research progress on control technology of diesel engine NOx and PM emissions

    Qiao X.. Advanced Materials Research, 127 , 2014. doi: 10.4028/www.scientific.net/AMR.1008-1009
  7. Synthesis and characterization of bismuth-cerium oxides for the catalytic oxidation of diesel soot

    Hebert S.C.. Materials, 13 (6), 2020. doi: 10.3390/ma13061369
  8. Microstructure and Properties of Porous SiC Ceramics Modified by CVI-SiC Nanowires

    Nan B.. Advanced Engineering Materials, 21 (5), 2019. doi: 10.1002/adem.201800653
  9. Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

    Zhang J.. SAE Technical Papers, 127 , 2018. doi: 10.4271/2018-01-0337
  10. Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity

    Mühlbauer W.. Combustion and Flame, 127 , 2016. doi: 10.1016/j.combustflame.2016.02.029
  11. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines

    Guan B.. Journal of Environmental Management, 127 , 2015. doi: 10.1016/j.jenvman.2015.02.027
  12. Recycling of hazardous diesel soot particles into a high performance solar evaporation device

    Wilson H.. Applied Surface Science, 127 , 2019. doi: 10.1016/j.apsusc.2019.05.080
  13. Research progress in diesel engine particulate matter control technology

    Wang J.. Xiandai Huagong/Modern Chemical Industry, 32 (6), 2012.
  14. An investigation of air-gas mixer types designed for dual fuel engines: Review

    Mahmood H.A.. Journal of Engineering and Applied Sciences, 14 (4), 2019. doi: 10.3923/jeasci.2019.1014.1033
  15. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOX emissions: An overview

    Dhal G.. Catalysis Science and Technology, 7 (9), 2017. doi: 10.1039/c6cy02612e
  16. Detection of soot particles using a resistive transducer based on thermophoresis

    Lutic D.. Environmental Engineering and Management Journal, 13 (9), 2014. doi: 10.30638/eemj.2014.251
  17. Experimental Analysis and Energy Balance on Thermal Barrier-Coated Piston Diesel Engine Using Biodiesel

    Gangula V.R.. Journal of The Institution of Engineers (India): Series C, 101 (6), 2020. doi: 10.1007/s40032-020-00604-4
  18. Formation and Oxidation/Gasification of Carbonaceous Deposits: A Review

    Mahamulkar S.. Industrial and Engineering Chemistry Research, 55 (37), 2016. doi: 10.1021/acs.iecr.6b02220
  19. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems

    Reşitoʇlu I.A.. Clean Technologies and Environmental Policy, 17 (1), 2015. doi: 10.1007/s10098-014-0793-9
  20. Conductivity for soot sensing: Possibilities and limitations

    Grob B.. Analytical Chemistry, 84 (8), 2012. doi: 10.1021/ac203152z
  21. Thermal analysis of nano-copper on eliminating sulfide and particulate matter from diesel engines

    Ti-Cai H.. Materials Research Express, 6 (5), 2019. doi: 10.1088/2053-1591/ab014b
  22. Catalytic oxidation of solid carbon and carbon monoxide over cerium-zirconium mixed oxides

    Yin K.. AIChE Journal, 63 (2), 2017. doi: 10.1002/aic.15575
  23. Compression ignition engine - Sources of pollution

    Istrate A.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/997/1/012148
  24. Synthesis, morphological, structural and topological characteristics of carbon nanosphere derived from Iraqi diesel

    Hussain N.B.. Journal of Physics: Conference Series, 127 (5), 2019. doi: 10.1088/1742-6596/1294/5/052069
  25. Nanostructured catalysts in vehicle exhaust control systems

    Gerasimov G.. Handbook of Ecomaterials, 3 , 2019. doi: 10.1007/978-3-319-68255-6_120
  26. Effect of Mn incorporation into Nd2Sn2O7 pyrochlore oxides on catalytic oxidation of soot particulates

    Liu X.. Nanoscience and Nanotechnology Letters, 8 (11), 2016. doi: 10.1166/nnl.2016.2188
  27. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines

    Tang T.. Journal of Environmental Sciences (China), 26 (12), 2014. doi: 10.1016/j.jes.2014.04.004
  28. Chemical composition of diesel particulate matter and its control

    Khobragade R.. Catalysis Reviews - Science and Engineering, 61 (4), 2019. doi: 10.1080/01614940.2019.1617607
  29. Experimental study the influence of EP antiwear additive on particle emissions in diesel engines

    Liang X.. SAE Technical Papers, 2 , 2013. doi: 10.4271/2013-01-1566
  30. Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters

    Gómez-Martín A.. Materials and Design, 107 , 2016. doi: 10.1016/j.matdes.2016.06.060
  31. Study on emission and particulate matter characteristics from diesel engine fueled with n-pentanol/Fischer–Tropsch diesel

    Ye L.. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020. doi: 10.1080/15567036.2020.1791286
  32. Real-world gaseous and particulate emissions from Euro IV to VI medium duty diesel trucks

    Papadopoulos G.. Science of the Total Environment, 127 , 2020. doi: 10.1016/j.scitotenv.2020.139137
  33. Catalytic control options for diesel particulate emissions including that from locomotive engines

    Singh S.. Locomotives and Rail Road Transportation: Technology, Challenges and Prospects, 2017. doi: 10.1007/978-981-10-3788-7_9
  34. A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)

    Sharma H.. Applied Catalysis B: Environmental, 127 , 2012. doi: 10.1016/j.apcatb.2012.08.021
  35. Comprehensive Review of the Impact of 2,5-Dimethylfuran and 2-Methylfuran on Soot Emissions: Experiments in Diesel Engines and at Laboratory-Scale

    Alexandrino K.. Energy and Fuels, 34 (6), 2020. doi: 10.1021/acs.energyfuels.0c00492
  36. Evaluating the Soot Handling Performance of Diesel Engine Oils through Optimized Engine Testing Protocol

    Tyagi B.. SAE Technical Papers, 127 , 2017. doi: 10.4271/2017-01-0885
  37. Highly porous hybrid particle-fibre ceramic composite materials for use as diesel particulate filters

    Houston A.. Journal of the European Ceramic Society, 40 (2), 2020. doi: 10.1016/j.jeurceramsoc.2019.07.039
  38. Pollutant emissions and combustion efficiency assessment of engines using biodiesel

    Rojas J.C.P.. Applied Sciences (Switzerland), 10 (23), 2020. doi: 10.3390/app10238646
  39. Studies on catalytic and structural properties of BaRuO3 type perovskite material for diesel soot oxidation

    Doggali P.. Journal of Environmental Chemical Engineering, 2 (1), 2014. doi: 10.1016/j.jece.2014.01.002
  40. Three-dimensionally ordered macroporous SiO2-supported transition metal oxide catalysts: Facile synthesis and high catalytic activity for diesel soot combustion

    Yu X.. RSC Advances, 5 (61), 2015. doi: 10.1039/c5ra07078c
  41. A kinetic model for SCR coated particulate filters—Effect of ammonia-soot interactions

    Trandafilović L.V.. Applied Catalysis B: Environmental, 127 , 2019. doi: 10.1016/j.apcatb.2018.08.076
  42. Chemical synthesis and evaluation of Co3O4/Ce0.9Zr0.05Y0.05O2-δ mixed oxides for the catalytic-assisted combustion of soot

    Téllez-Salazar W.N.. Chemical Engineering Science, 127 , 2021. doi: 10.1016/j.ces.2021.116443
  43. Phy-chemical attributes of nano-scale V2O5/TiO2 catalyst and its effect on soot oxidation

    Mei D.. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2), 2016. doi: 10.9767/bcrec.11.2.542.161-169
  44. Occupational exposure to diesel exhaust and diesel particulate matter (DPM) in Indian underground mines

    Sagesh Kumar M.R.. Journal of Mines, Metals and Fuels, 46 (1), 2019.
  45. A Radical Rethink on Soot Containment from Auto-Rickshaw Exhausts

    Ghosh S.. Advanced Materials Research, 127 , 2014. doi: 10.4028/www.scientific.net/AMR.911.383
  46. Influence of titanium based fuel additive on diesel engine performance and emissions

    Keskin A.. Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (3), 2013.
  47. On-board ultrasonic water-in-diesel emulsion (WIDE) fuel system for low-emission diesel engine combustion

    Kojima K.. Ohio Journal of Science, 118 (2), 2018. doi: 10.18061/OJS.V118I2.6443
  48. Comparative analysis of soot formation processes of diesel and ABE (Acetone-Butanol-Ethanol) based on CFD coupling with phenomenological soot model

    Fu J.. Fuel, 127 , 2017. doi: 10.1016/j.fuel.2017.04.108
  49. Isotopic study of the La0.7Ag0.3MnOδ≤3 perovskite-catalyzed soot oxidation in presence of NO

    Urán L.. Applied Catalysis A: General, 127 , 2020. doi: 10.1016/j.apcata.2020.117611
  50. Enhancement of the Hydrothermal Stability of WO3/Ce0.68Zr0.32O2 Catalyst by Silica Modification for NH3-SCR

    Liu S.. ACS Applied Energy Materials, 3 (1), 2020. doi: 10.1021/acsaem.9b02227
  51. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta

    Galvis B.. Journal of the Air and Waste Management Association, 63 (6), 2013. doi: 10.1080/10962247.2013.776507
  52. New experiment of diesel exhaust treatment by atmospheric pressure plasma–wood fiber combination

    Guo X.. Catalysts, 10 (5), 2020. doi: 10.3390/catal10050577
  53. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    Ivanova T.. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 34 (3), 2016. doi: 10.1116/1.4944589
  54. Effect of urbanization on the micronucleus frequency in birds from forest fragments

    Baesse C.. Ecotoxicology and Environmental Safety, 127 , 2019. doi: 10.1016/j.ecoenv.2019.01.026
  55. The Permeability of Novel Hybrid Fiber Composite Material for Use as Diesel Particulate Filters

    Houston A.J.. Advanced Engineering Materials, 22 (11), 2020. doi: 10.1002/adem.202000562
  56. Effect of DOC catalyst composition on emission reduction performance for light-duty diesel engine

    Lou D.. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34 (6), 2018. doi: 10.11975/j.issn.1002-6819.2018.06.009
  57. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    Hossain F.. Energy Conversion and Management, 127 , 2017. doi: 10.1016/j.enconman.2017.09.016
  58. Recent Advances in Nanostructured Catalysts for Vehicle Exhaust Gas Treatment

    Gerasimov G.. Nanotechnology in Environmental Science, 1 , 2018. doi: 10.1002/9783527808854.ch3
  59. The role of non-thermal plasma technique in NOx treatment: A review

    Talebizadeh P.. Renewable and Sustainable Energy Reviews, 40 , 2014. doi: 10.1016/j.rser.2014.07.194
  60. Applying the handprint approach to assess the air pollutant reduction potential of paraffinic renewable diesel fuel in the car fleet of the city of Helsinki

    Lakanen L.. Journal of Cleaner Production, 127 , 2021. doi: 10.1016/j.jclepro.2021.125786
  61. Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis

    Sharma H.. Energy and Fuels, 26 (9), 2012. doi: 10.1021/ef3009025
  62. A novel technique for production of paint from the diesel exhaust soot

    Ali R.. AIP Conference Proceedings, 127 , 2020. doi: 10.1063/5.0006863
  63. Simulation on soot deposition in in-wall and on-wall catalyzed diesel particulate filters

    Kong H.. Catalysis Today, 2019. doi: 10.1016/j.cattod.2018.07.022
  64. Sulfur dioxide-tolerant strontium chromate for the catalytic oxidation of diesel particulate matter

    Khobragade R.. Catalysis Science and Technology, 8 (6), 2018. doi: 10.1039/c7cy02553j
  65. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends

    Hoseini S.. Renewable and Sustainable Energy Reviews, 73 , 2017. doi: 10.1016/j.rser.2017.01.088
  66. Hexanol: A renewable low reactivity fuel for RCCI combustion

    Jacob Thomas J.. Fuel, 127 , 2021. doi: 10.1016/j.fuel.2020.119294
  67. Vibration Analysis on Palm Oil Methyl Ester Biodiesel as a Fuel with the Additional of Butanol

    Zikri J.. Journal of Physics: Conference Series, 127 (1), 2019. doi: 10.1088/1742-6596/1262/1/012012
  68. Laccase oxidation and removal of toxicants released during combustion processes

    Prasetyo E.N.. Chemosphere, 127 , 2016. doi: 10.1016/j.chemosphere.2015.07.082
  69. Factors and trends affecting the identification of a reliable biomarker for diesel exhaust exposure

    Morgott D.. Critical Reviews in Environmental Science and Technology, 44 (16), 2014. doi: 10.1080/10643389.2013.790748
  70. Three-dimensionally ordered macroporous MnxCe 1- xOδ and Pt/Mn0.5Ce0.5O δ catalysts: Synthesis and catalytic performance for soot oxidation

    Yu X.. Industrial and Engineering Chemistry Research, 53 (23), 2014. doi: 10.1021/ie500666m
  71. Cement-based diesel exhaust emission soot coatings for the removal of organic pollutants from water

    Pratap Singh V.. Construction and Building Materials, 127 , 2020. doi: 10.1016/j.conbuildmat.2019.117377
  72. A comprehensive review on the environmental impacts of diesel/biodiesel additives

    Hosseinzadeh-Bandbafha H.. Energy Conversion and Management, 127 , 2018. doi: 10.1016/j.enconman.2018.08.050
  73. Interactions of sulfur oxides with diesel oxidation catalysts (DOCs)

    Sharma H.. ACS Symposium Series, 127 , 2013. doi: 10.1021/bk-2013-1132.ch005
  74. Influence of Alternate Fuels on the Performance and Emission from Internal Combustion Engines and Soot Particle Collection Using Thermophoretic Sampler: A Comprehensive Review

    Singh R.K.. Waste and Biomass Valorization, 10 (10), 2019. doi: 10.1007/s12649-018-0338-2
  75. An Analysis of Turbulent Mixing Effects on the Soot Formation in High Pressure n-dodecane Sprays

    Razak M.F.A.. Flow, Turbulence and Combustion, 103 (3), 2019. doi: 10.1007/s10494-019-00045-9
  76. An approach to enhance selective catalytic reduction system

    Sharma A.. Conference Proceedings - IEEE SOUTHEASTCON, 2017. doi: 10.1109/SECON.2017.7925369
  77. Effect of acetone–butanol–ethanol addition to diesel on the soot reactivity

    Luo J.. Fuel, 127 , 2018. doi: 10.1016/j.fuel.2018.04.036
  78. In Situ Generation of Radical Coke and the Role of Coke-Catalyst Contact on Coke Oxidation

    Mahamulkar S.. Industrial and Engineering Chemistry Research, 55 (18), 2016. doi: 10.1021/acs.iecr.6b00556
  79. Atmospheric pressure plasma for diesel particulate matter treatment: A review

    Guo X.. Catalysts, 11 (1), 2021. doi: 10.3390/catal11010029
  80. Applications and preparation methods of copper chromite catalysts: A review

    Prasad R.. Bulletin of Chemical Reaction Engineering and Catalysis, 6 (2), 2011. doi: 10.9767/bcrec.6.2.829.63-113
  81. A Co3O4-CeO2 functionalized SBA-15 monolith with a three-dimensional framework improves NOx-assisted soot combustion

    Yang Q.. RSC Advances, 5 (34), 2015. doi: 10.1039/c4ra16832a
  82. Simulation of flow in diesel particulate filter system using metal fiber filter media

    Park J.K.. International Journal of Automotive Technology, 15 (3), 2014. doi: 10.1007/s12239-014-0038-2
  83. Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent

    Bluhm K.. Science of the Total Environment, 127 , 2016. doi: 10.1016/j.scitotenv.2016.05.055
  84. Effect of thermal conductivity of catalytic materials on soot sensing performance based on a combustion-type sensor

    Ruan H.. Chemistry Letters, 46 (9), 2017. doi: 10.1246/cl.170480
  85. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers

    Orihuela M.P.. Journal of Environmental Management, 127 , 2017. doi: 10.1016/j.jenvman.2017.05.003
  86. A four-way catalytic system for control of emissions from diesel engine

    Trivedi S.. Sadhana - Academy Proceedings in Engineering Sciences, 43 (8), 2018. doi: 10.1007/s12046-018-0884-0
  87. Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation

    Ivanova T.. Coatings, 8 (7), 2018. doi: 10.3390/coatings8070237
  88. Effect of injection strategy on smoothness, emissions and soot characteristics of PCCI-conventional diesel mode transition

    Rohani B.. Applied Thermal Engineering, 93 , 2016. doi: 10.1016/j.applthermaleng.2015.09.075
  89. Review of the regulations and techniques to eliminate toxic emissions from diesel engine cars

    Olabi A.G.. Science of the Total Environment, 127 , 2020. doi: 10.1016/j.scitotenv.2020.141249
  90. Euro 6 Unregulated Pollutant Characterization and Statistical Analysis of After-Treatment Device and Driving-Condition Impact on Recent Passenger-Car Emissions

    Martinet S.. Environmental Science and Technology, 51 (10), 2017. doi: 10.1021/acs.est.7b00481
  91. Effect of the fuel injection angle on the combustion of a low-speed two-stroke marine diesel engine

    Wang H.. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 41 (1), 2020. doi: 10.11990/jheu.201903026
  92. New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project

    Orihuela M.P.. Energy, 127 , 2020. doi: 10.1016/j.energy.2020.117577
  93. 3DOM SiO2-Supported Different Alkali Metals-Modified MnOx Catalysts: Preparation and Catalytic Performance for Soot combustion

    Yu X.. ChemistrySelect, 2 (31), 2017. doi: 10.1002/slct.201702164
  94. Effect of exhaust gas recirculation (EGR) and multiple injections on diesel soot nano-structure and reactivity

    Rohani B.. Applied Thermal Engineering, 116 , 2017. doi: 10.1016/j.applthermaleng.2016.11.116
  95. Effect of Co3O4 on the kinetics of thermal decomposition of diesel particulate matter

    Mei D.. Emerging Materials Research, 5 (1), 2016. doi: 10.1680/jemmr.15.00009
  96. Investigation of the electrocatalytic activity for ethanol oxidation of Pt nanoparticles modified with small amount (≤5 wt%) of CeO 2

    Paulo M.. Journal of Electroanalytical Chemistry, 127 , 2019. doi: 10.1016/j.jelechem.2019.04.008