Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

*R. Prasad -  Department of Chemical Engineering & Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005,, India
V. Rao Bella -  Department of Chemical Engineering & Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005,, India
Received: 20 Jan 2011; Published: 20 Jan 2011.
Open Access
Citation Format:
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 329 474
Abstract

To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF). These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved

(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010)

[How to Cite: R. Prasad, V.R. Bella. (2010). Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2): 95-101. doi:10.9767/bcrec.5.2.796.95-101]

[DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]

Cited by in: ACS 1 |

Keywords
Soot emissions; Soot oxidation; Isothermal kinetics

Article Metrics:

  1. Kalogirou, M.; Pistikopoulos, P.; Ntziachristos, L.; and Samaras, Z. 2009. Isothermal soot oxidation experiments with intermediate gas change in a perkin-elmer TGA6. J. Therm. Anal. Cal. 95: 141–147.
  2. Lloyd, A.C.; and T.A. Cackette. 2001. Diesel Engines: Environmental Impact and Control. J. Air & Waste Manage. Assoc. 51: 809-847.
  3. Walker, A.P. 2004. Controlling particulate emissions from diesel vehicles: A Review. Topics in Catal 28: 165-170.
  4. Stamatelos, A.M. 1997. A review of the effect of particulate traps on the efficiency of vehicle diesel engines.Energy Convers. Mgmt. 38: 83-99.
  5. Fino, D. 2007. Diesel emission control: A review of catalytic filters for particulate removal. Sci. & Technol. of Adv. Materials 8: 93-100.
  6. Lopez-Fonseca, R.; Elizundia, U.; Landa, I.; Gutie´rrez-Ortiz, M.A.; Gonza´lez-Velasco, J.R. 2005. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Appl Catal B 61: 150–158.
  7. Van Setten, B.A.A.L.; Schouten, J.M.; Makkee, M.; Moulijn, J.A. 2000. Realistic contact for soot with an oxidation catalyst for laboratory studies. Appl. Catal. B 28: 253-257.
  8. Pierre Darcy, Patrick Da Costa, Henry Mellotte,Jean-Michel Trichard, Gerald Djega-Mariadassou. 2007. Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catalysis Today 119: 252–256.
  9. Stanmore, B.R.; Brilhac, J.F.; Gilot, P. 2001. The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39: 2247–68.
  10. Dernaika, B.; Uner, D. 2003. A simplified approach to determine the activation energies of uncatalyzed and catalyzed combustion of soot. Appl. Catal. B 40: 219-229
  11. Illekova, E.; and Csomorova, K.2005. Kinetics of oxidation in various forms of carbon. J. Therm. Anal. Cal. 80: 103-108.
  12. Lopez-Fonseca, R.; Landa, I.; Gutierrez-Ortiz, M. A.; and Gonzalez-Velasco, J. R. 2005. Non- isothermal analysis of the kinetics of the combustion of carbonaceous materials, J. Therm. Anal. Cal.80: 65-69.
  13. Mianowski, A.; Bigda, R. ; and Zymla, V. 2006. Study on kinetics of combustion of brick-shaped carbonaceous materials. J. Therm. Anal.Cal. 84: 563-574.
  14. Neeft, J.; Hoornaert, F. ; Makkee, M.; and Moulijn, J. A.1996. The effects of heat and mass transfer in thermogravimetrical analysis. A case study towards the catalytic oxidation of soot. Thermochim. Acta, 287: 261-278.
  15. Stratakis, G. A.; and Stamatelos, A. M. 2003. Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame. 132: 157-169.
  16. Yezerets, A.; Currier, N. W.; and Eadler, H. A. 2003. Experimental Determination of the Kinetics of Diesel Soot Oxidation By OD2 - Modelling Consequences. SAE technical paper, 2003-01-0833.
  17. Messerer, A.; Niessner, R.; and Poschl, U. 2006. Comprehensive kinetic characte- rization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: Measurement, Langmuir-Hinshelwood, and Arrhenius parameters. Carbon 44: 307-324.
  18. Ahlstrom, A. F. and Odenbrand, C. U. I. Combustion characteristics of soot deposits from diesel engines.Carbon 1989, 27, 475-483.
  19. Du, Z., Sarofim, A. F., Longwell, J. P. and Tognotti, L. 1991. In Fundamental Issues in Control of Carbon Gasification Reactivity, ed. J. Lahaye and P. Ehrburger. Kluwer, Dordrecht . 91.
  20. Du, Z.; Sarofim, A. F.; Longwell, J. P.; and Mims, C. A.1991. Kinetic measurement and modeling of carbon oxidation. Energy and Fuels, 5: 214-221.
  21. Gilot, P.; Bonnefoy, F.; Marcuccilli, F.; and Prado, G.1993. Determination of kinetic data for soot oxidation. Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis. Combust. Flame 95: 87-100.
  22. Otto, K.; Sieg, M. H.; Zinbo, M.; and Bartosiewicz, L.1980. The Oxidation of Soot Deposits From Diesel Engines. SAE Paper 800336.
  23. Neeft, J.P.A. 1995.Catalytic oxidation of soot. Potential for the reduction of diesel particulate emissions, Ph.D. thesis, Delft University of Technology, Delft.
  24. Kalogirou, M.; Samaras Z. 2010. Soot oxidation kinetics from TG experiments. J Therm Anal Calorim 99: 1005–1010.
  25. Castoldi, L.; Matarrese, R.; Lietti, L.; and Forzatti, P. 2006. Simultaneous removal of NOx and soot on Pt–Ba/Al2O3 NSR catalysts. Appl. Catal. B 64: 25-34.
  26. Matarrese, R.; Castoldi, L.; Lietti, L.; and Forzatti, P. 2007. High performances of Pt- K/Al2O3 versus Pt-Ba/Al2O3 LNT catalysts in the simultaneous removal of NOx and soot. Top. Catal. 42-43: 293-297.
  27. Lopez-Sua rez, F. E.; Bueno-Lopez, A.; and Illan-Gomez M. J. 2008. Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Appl.Catal. B 84: 651-658.
  28. Fua, M.; Yuea, X.; Yea, D.; Ouyanga, J.; Huanga, B.; Wua, J.; and Liangc, H. 2010. Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis. Catal. Today available online.
  29. Reddy, B. M.; and Rao, K. N. 2009. Copper promoted ceria-zirconia based bimetallic catalysts for low temperature soot oxidation. Catalysis Commun 10: 1350-1353.
  30. Prasad R., Bella V.R. Comparison of Preparation Methods of copper based PGM-free diesel-soot oxidation catalysts. To be published.
  31. Serra, V.; Saracco, G.; Badini, C.; Specchia, V. 1997. Combustion of carbonaceous materials by Cu-K-V based catalysts: II. Reaction mechanism. Appl. Catal. B 11: 329-346.
  32. Querini, C.; Ulla, M.; Requejo, F.; Soria, J.; Sedran, U.; Miro, E. 1998. Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co,K/MgO catalysts. Appl. Catal. B 15: 5-19.
  33. Shangguan, W. F.; Teraoke, Y.; Kagawa, S. 1997. Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe2O4 catalyst. Appl. Catal. B 12: 237-247.
  34. Levenspiel, O. 1999. Chemical Reaction Engineering, John Wiley Eastern & Sons, New York, 380.