Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

*Istadi Istadi -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UNDIP Tembalang, Semarang 50239, Indonesia
S. Suherman -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UNDIP Tembalang, Semarang 50239, Indonesia
Luqman Buchori -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UNDIP Tembalang, Semarang 50239, Indonesia
Received: 20 Jan 2011; Published: 20 Jan 2011.
Open Access
Citation Format:
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 394 583
Abstract

The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13) with favorable heating value (44,768 kJ/kg). ©2010 BCREC UNDIP. All rights reserved

(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010)

[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010). Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2): 103-111. doi:10.9767/bcrec.5.2.797.103-111]

[DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797]

Keywords
plastic waste; Residual Catalytic Cracking; optimization; central composite design; response surface methodology

Article Metrics:

  1. T.J. Appleton, R.I. Colder, S.W. Kingman, I.S. Lowndes, A.G. Read. (2005). Applied Energy, 81, 85-11
  2. B. V. Babu, A. S. Chaurasia, (2003). Energy Conversion Management, 44, 2135-2158.
  3. H. Huang, L. Tang, (2007). Energy Conversion Management, 48, 1331-1337.
  4. G. Manos, A. Garforth, J. Dwyer, (2000). Industrial Engineering Chemistry Research, 39, 1198-1202
  5. A.R. Songip, T. Masuda, H. Kuwahara, K. Hashimoto. (1993). Applied Catalysis B: Environmental, 2, 153-164
  6. Y. Ishihara, H. Nanbu, T. Ikemura, T. Takesue, (1990). Fuel, 69, 978-984
  7. Y. Sakata, M.A. Uddin, A. Muto, (1999). Journal of Analytical and Applied Pyrolysis, 51, 135-155
  8. Y. Uemichi, Y. Kashiwaya, M. Tsukidate, A. Ayame, H. Kanoh, (1983). Bulletin of Chemical Society of Japan, 56, 2768-2773
  9. Y.H. Lin, M.H. Yang, (2005), Journal of Molecular Catalysis A: Chemical, 231, 113-122
  10. Y. Uemichi, J. Nakamura, T. Itoh, M. Sugioka, (1999). Industrial Engineering Chemistry Research, 38, 385-390
  11. A. Marcilla, A. Gomez-Siurana, F. Valdes, (2008). Microporous Mesoporous Materials, 109, 420-428
  12. A. Marcilla, A. Gomez.Siurana, F. Valdes, (2007). Journal of Analytical and Applied Pyrolysis, 79, 433-442
  13. S. Ali, A.A. Garforth, D.H. Harris, D.J. Rawlence, Y. Uemichi, (2002). Catalysis Today, 75, 247-255
  14. S.C. Cardona, A. Corma, (2000). Applied Catalysis B: Environmental, 25, 151-162
  15. N.S. Akpanudoh, K. Gobin, G. Manos, (2005). Journal of Molecular Catalysis A: Chemical, 235, 67-73
  16. G. De la Puente, C. Klocker, U. Sedran, (2002). Applied Catalysis B: Environmental, 36, 279-285
  17. G. De la Puente, J.M. Arandes, U.A. Sedran, (1997). Industrial Engineering Chemistry Research, 36, 4530-4534
  18. D.P. Serrano, J. Aguado, J.M. Escola, (2000). Industrial Engineerng Chemistry Research, 39, 1177-1184
  19. J. Aguado, J.L. Sotelo, D.P. Serrano, J.A. Calles, J.M. Escola, (1997). Energy Fuels, 11, 1225-1231
  20. D.P. Serrano, J. Aguado, J.M. Escola, (2000), Applied Catalysis B: Environmental, 25, 181-189
  21. D.C. Montgomery, (2001). Design and Analysis of Experiments, John Wiley & Sons, New York
  22. G.M. Clarke, R.E. Kempson, (1997). Introduction to the Design and Analysis of Experiments, Arnold, London.
  23. J.A. Cornell, (1990). How to Apply Response Surface Methodology, American Society for Quality Control, Wisconsin.
  24. G.E.P. Box, W.G. Hunter, J.S. Hunter, (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, New York
  25. Ji-lu Zheng, Xi-feng Zhu, Qing-xiang Guo, Qing-shi Zhu. (2006). Waste Management. 26, 1430-1435.
  26. P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, B. Kitiyanan, K. Siemanond and T. Rirksomboon. (2005). Fuel, 84, 849-857.
  27. J. Aguado, D.P. Serrano, G. San Miguel, (2007). Journal of Polymer & Environment, 15, 107-118.
  28. W. L. Yoona, J. S. Parka, H. Junga, H. T. Leea, D. K. Leeb. (1999). Fuel. 78, 809–813