Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

*Ateeq Rahman  -  College of Engineering, Department of Chemical Engineering King Saud University, Post Box-800, Riyadh-11421, Kingdom of Saudi Arabia, United Arab Emirates
Received: 20 Jan 2011; Published: 20 Jan 2011.
Open Access
Citation Format:
Abstract

The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO) and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved

(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010)

[How to Cite:Ateeq Rahman. (2010). Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2): 113-126. doi:10.9767/bcrec.5.2.798.113-126]

[DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798 ]

Keywords: Hydrogenation; IPA; heterogeneous catalysts; acetone; HT-hydrotalcite catalysts

Article Metrics:

  1. John Wiley and Son, (1976) Kirk-Othmer: Encyclopedia of Chemical Technology, 3rd Edition, vol. 1, 179-182
  2. (a) A. M. W. Wojick, et. al; (2001) J. Phys, D: Appl. Phys, 34, 660-664. (b) N. Meng et. al; (1997) Int. J. Hydrogen Energy, 22, 361-362
  3. F. Rositani, et. al; (1985) J. Chem. Tech and Biotech, 35A, 234-238
  4. J. Cunningham, et. al; (1986 ) J. Catal 102, 160-171
  5. R. A. W. Johnstone, et. al; (1985) Chem Rev, 85, 129-157
  6. S. Narayanan, et. al; (1996) Faraday Trans 1, 231-235
  7. S. Ozkar et. al; (2005) J. Amer Chem Soc 127, 4800-4808
  8. L. C. Anderson, et. al; (1942) J. Amer Chem Soc, 64, 1456-1459
  9. K. Haack, et. al; (1997)J. Catal, 36,285-288
  10. W. Reith, et. al; Stud Surf. Sci. Catal. (1991) 59, 487- 494
  11. J. Simonikova, et. al; (1973) J. Catal 29, 412-420
  12. S. Talwalkar, et. al; (2006) Appl. Catal A: 302, 140-148
  13. A. A. Nikolopoulos, et. al; (2005) Appl. Catal A: 296, 128-136
  14. G. M. R. van Druten and V. Ponec. (2000) Appl. Catal A: 191, 153-162
  15. Y. Ando, et. al; (2005) J. Phy. Chem. B 109,2086-2089
  16. S. Ozkar et. al; (2005) J. Amer Chem Soc 127, 4800-4808
  17. L. C. Anderson, et. al; (1942) J. Amer Chem Soc, 64, 1456-1459
  18. K. Haack, et. al; (1997)J. Catal, 36, 285-288
  19. K. Matsumura, et. al; (1997 ) J. Am. Chem. Soc., 119, 8738-8741
  20. S. Vastag, et. al; (1979) J. Mol. Catal 5, 189-195
  21. J. Nyhlen, et. al; (2009) Dalton Trans., 5780-5786
  22. S. Narayanan, et. al; (1996) Faraday Trans 1, 231-235
  23. S. Narayanan, and R. Unnikrishnan (1998) Faraday Trans 1, 94, 1123-1128
  24. W. Reith, et. al; Stud Surf. Sci. Catal. (1991) 59, 487-494
  25. S. Barman, et. al; (2006) Ind. Eng. Chem. Res., 45, 3481-3484
  26. G. M. R. van Druten, and V. Ponec (2000) Appl. Catal. A. Gen., 191, 153-162
  27. A. M. Funte, et. al; (2001) Appl Catal A, 208, 35-46
  28. T.M. Yurieva, J. Mol. Catal. (1996) 105, 61-66
  29. T.M. Yurieva Catalysis Today (1999) 51, 457-467
  30. Ateeq Rahman and S B Jonnalagadda, (2009), J. Mol. Cat. A, 299, 98-101
  31. S. Narayanan, and R. Unnikrishnan, (1998). Stud. Surf. Sci. Catal. 113, 799-807
  32. T.M. Yurieva, (1999). Catalysis Today, 51, 457-467
  33. J. Cunningham et.al., (1990). J. Mol. Catal. 57, 379-384
  34. G. M. R. van Druten, and V. Ponec, (2000). Appl. Catal. A Gen., 191, 153-162
  35. L. M. Gandia, et. al., (1995). J. Catal. 157, 461-471
  36. B. Sen, and M. A. Vannice, (1988). J. Catal. 113, 52-71
  37. M. Okumura, et. al., (2003). Appl. Catal. B Env. 41, 43-52
  38. M. K. Moghaddam, et. al., (2006). J. Mol. Catal. A 306,.11-16
  39. L. Melo, et. al. (1993). Stud. Surf. Sci. Catal. 78, 701-706
  40. B. M. Choudary, et. al., (2003). J. Mol. Catal. 206, 145-151
  41. C. Moreau, et. al. (1996). J. Mol. Catal. 112, 133–141
  42. E.M. Moroz, et. al., (1987). React. Kinet. Catal. Lett. 33, 185-189
  43. J. Cunningham, et. al., (1993). J. Mater. Chem. 3, 743-750
  44. T.M. Yurieva, et. al., (1996). J. Mol. Catal. 113, 455-468
  45. J. Cunningham, et. al. (1986). Appl. Catal. 25, 129-135
  46. I. E. Wachs, R. J. Madix, (1978). J. Catal. 53, 208-227
  47. M. Okumura, et. al., (2003). Appl. Catal. B Env. 41, 43-52
  48. B. J. Hussey, et. al., (1982). Tetrahedron, 38, 3769-3774
  49. A. Rahman, S. B. Jonnalagadda, (2008). Catal. Lett. 123, 264-268
  50. A. Rahman, et. al., (2008). Catal. Commun. 9, 2417-2421
  51. P. N. Rylander, (1985). Hydrogenation Methods, Academic Press, London, 1985, 7-35
  52. P. Yang, et. al., (2005). Catal. Commun. 6, 107-111

Last update: 2021-05-14 03:57:26

No citation recorded.

Last update: 2021-05-14 03:57:26

  1. p-Nitrophenol flow hydrogenation with nano-Cu2O grafted on polymeric resin

    Paun C.. Catalysis Communications, 92 , 2017. doi: 10.1016/j.catcom.2017.01.003
  2. Advances in Organic Liquid-Gas Chemical Heat Pumps

    Cai J.. Chemical Engineering and Technology, 34 (10), 2011. doi: 10.1002/ceat.201100178
  3. Electrodeposition of Platinum (Pt) Particles as a Catalyst of Hydrogenation of Acetone

    Rahayu Y.. IOP Conference Series: Materials Science and Engineering, 127 (4), 2019. doi: 10.1088/1757-899X/546/4/042034
  4. Selective hydrodeoxygenation of bio-oil derived products: Ketones to olefins

    Witsuthammakul A.. Catalysis Science and Technology, 5 (7), 2015. doi: 10.1039/c5cy00367a
  5. Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts

    Chen H.. Cuihua Xuebao/Chinese Journal of Catalysis, 36 (3), 2015. doi: 10.1016/S1872-2067(14)60240-0
  6. A review on reduction of acetone to isopropanol with Ni nano superactive, heterogeneous catalysts as an environmentally benevolent approach

    Rahman A.. Applied Catalysis A: General, 127 , 2014. doi: 10.1016/j.apcata.2013.10.015
  7. CuO nanoparticles from the strongly hydrated ionic liquid precursor (ILP) tetrabutylammonium hydroxide: Evaluation of the ethanol sensing activity

    Taubert A.. ACS Applied Materials and Interfaces, 4 (2), 2012. doi: 10.1021/am201427q
  8. Catalytic hydrogenation of acetone to isopropanol on bimetallic silver-gold nanocatalyst

    Sarno M.. Key Engineering Materials, 127 , 2019. doi: 10.4028/www.scientific.net/KEM.813.98
  9. Fabrication of hierarchically mesoporous CuO nanostructures and their role as heterogenous catalysts and sensors

    Din Sheikh M.. RSC Advances, 6 (49), 2016. doi: 10.1039/c6ra07307g
  10. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide

    Zhou J.. Metabolic Engineering, 14 (4), 2012. doi: 10.1016/j.ymben.2012.03.005