Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

*Ateeq Rahman -  College of Engineering, Department of Chemical Engineering King Saud University, Post Box-800, Riyadh-11421, Kingdom of Saudi Arabia, United Arab Emirates
Received: 20 Jan 2011; Published: 20 Jan 2011.
Open Access
Citation Format:
Article Info
Section: Review Articles
Language: EN
Full Text:
Statistics: 2463 1568
Abstract

The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO) and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved

(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010)

[How to Cite:Ateeq Rahman. (2010). Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2): 113-126. doi:10.9767/bcrec.5.2.798.113-126]

[DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798 ]

Keywords
Hydrogenation; IPA; heterogeneous catalysts; acetone; HT-hydrotalcite catalysts

Article Metrics:

  1. John Wiley and Son, (1976) Kirk-Othmer: Encyclopedia of Chemical Technology, 3rd Edition, vol. 1, 179-182
  2. (a) A. M. W. Wojick, et. al; (2001) J. Phys, D: Appl. Phys, 34, 660-664. (b) N. Meng et. al; (1997) Int. J. Hydrogen Energy, 22, 361-362.
  3. F. Rositani, et. al; (1985) J. Chem. Tech and Biotech, 35A, 234-238.
  4. J. Cunningham, et. al; (1986 ) J. Catal 102, 160-171.
  5. R. A. W. Johnstone, et. al; (1985) Chem Rev, 85, 129-157.
  6. S. Narayanan, et. al; (1996) Faraday Trans 1, 231-235.
  7. S. Ozkar et. al; (2005) J. Amer Chem Soc 127, 4800-4808.
  8. L. C. Anderson, et. al; (1942) J. Amer Chem Soc, 64, 1456-1459.
  9. K. Haack, et. al; (1997)J. Catal, 36,285-288.
  10. W. Reith, et. al; Stud Surf. Sci. Catal. (1991) 59, 487- 494.
  11. J. Simonikova, et. al; (1973) J. Catal 29, 412-420.
  12. S. Talwalkar, et. al; (2006) Appl. Catal A: 302, 140-148.
  13. A. A. Nikolopoulos, et. al; (2005) Appl. Catal A: 296, 128-136.
  14. G. M. R. van Druten and V. Ponec. (2000) Appl. Catal A: 191, 153-162.
  15. Y. Ando, et. al; (2005) J. Phy. Chem. B 109,2086-2089.
  16. S. Ozkar et. al; (2005) J. Amer Chem Soc 127, 4800-4808.
  17. L. C. Anderson, et. al; (1942) J. Amer Chem Soc, 64, 1456-1459.
  18. K. Haack, et. al; (1997)J. Catal, 36, 285-288.
  19. K. Matsumura, et. al; (1997 ) J. Am. Chem. Soc., 119, 8738-8741.
  20. S. Vastag, et. al; (1979) J. Mol. Catal 5, 189-195.
  21. J. Nyhlen, et. al; (2009) Dalton Trans., 5780-5786.
  22. S. Narayanan, et. al; (1996) Faraday Trans 1, 231-235.
  23. S. Narayanan, and R. Unnikrishnan (1998) Faraday Trans 1, 94, 1123-1128.
  24. W. Reith, et. al; Stud Surf. Sci. Catal. (1991) 59, 487-494.
  25. S. Barman, et. al; (2006) Ind. Eng. Chem. Res., 45, 3481-3484.
  26. G. M. R. van Druten, and V. Ponec (2000) Appl. Catal. A. Gen., 191, 153-162.
  27. A. M. Funte, et. al; (2001) Appl Catal A, 208, 35-46.
  28. T.M. Yurieva, J. Mol. Catal. (1996) 105, 61-66.
  29. T.M. Yurieva Catalysis Today (1999) 51, 457-467.
  30. Ateeq Rahman and S B Jonnalagadda, (2009), J. Mol. Cat. A, 299, 98-101.
  31. S. Narayanan, and R. Unnikrishnan, (1998). Stud. Surf. Sci. Catal. 113, 799-807.
  32. T.M. Yurieva, (1999). Catalysis Today, 51, 457-467.
  33. J. Cunningham et.al., (1990). J. Mol. Catal. 57, 379-384.
  34. G. M. R. van Druten, and V. Ponec, (2000). Appl. Catal. A Gen., 191, 153-162.
  35. L. M. Gandia, et. al., (1995). J. Catal. 157, 461-471.
  36. B. Sen, and M. A. Vannice, (1988). J. Catal. 113, 52-71.
  37. M. Okumura, et. al., (2003). Appl. Catal. B Env. 41, 43-52.
  38. M. K. Moghaddam, et. al., (2006). J. Mol. Catal. A 306,.11-16.
  39. L. Melo, et. al. (1993). Stud. Surf. Sci. Catal. 78, 701-706.
  40. B. M. Choudary, et. al., (2003). J. Mol. Catal. 206, 145-151.
  41. C. Moreau, et. al. (1996). J. Mol. Catal. 112, 133–141.
  42. E.M. Moroz, et. al., (1987). React. Kinet. Catal. Lett. 33, 185-189.
  43. J. Cunningham, et. al., (1993). J. Mater. Chem. 3, 743-750.
  44. T.M. Yurieva, et. al., (1996). J. Mol. Catal. 113, 455-468.
  45. J. Cunningham, et. al. (1986). Appl. Catal. 25, 129-135.
  46. I. E. Wachs, R. J. Madix, (1978). J. Catal. 53, 208-227.
  47. M. Okumura, et. al., (2003). Appl. Catal. B Env. 41, 43-52.
  48. B. J. Hussey, et. al., (1982). Tetrahedron, 38, 3769-3774.
  49. A. Rahman, S. B. Jonnalagadda, (2008). Catal. Lett. 123, 264-268.
  50. A. Rahman, et. al., (2008). Catal. Commun. 9, 2417-2421.
  51. P. N. Rylander, (1985). Hydrogenation Methods, Academic Press, London, 1985, 7-35.
  52. P. Yang, et. al., (2005). Catal. Commun. 6, 107-111