skip to main content

Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas for Biodiesel Production

*Vipan Kumar Sohpal  -  Department of Chemical Engineering, Beant College of Engineering and Technology, Gurdaspur, Punjab, India
Amarpal Singh  -  Department of Bio Technology, National Institute of Technology, Durgapur, West Bengal, India
Apurba Dey  -  Department of Bio Technology, National Institute of Technology, Durgapur, West Bengal, India, India

Citation Format:
Abstract

Biodiesel is an alternative source of fuel that can be synthesized from edible, non-edible and waste oils through transesterification. Firstly Transesterification reaction of Jatropha Curcas oil with butanol in the ratio of 1:25 investigated by using of sodium hydroxide catalyst with mixing intensity of 250 rpm in isothermal batch reactor. Secondly the fuzzy model of the temperature is developed. Performance was evaluated by comparing fuzzy model with the batch kinetic data. Fuzzy models were developed using adaptive neurofuzzy inference system (ANFIS). © 2011 BCREC UNDIP. All rights reserved

(Received: 27th January 2011, Revised: 13rd February 2011; Accepted: 16th February 2011)

[How to Cite: V.K. Sohpal, A. Singh, A. Dey. (2011). Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas for Biodiesel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1): 31-38. doi:10.9767/bcrec.6.1.816.31-38]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.816.31-38 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/816 ]

| View in 

Fulltext View|Download
Keywords: Transesterification; Temperature; Jatropha Curcas oil; Chemical Kinetics and Fuzzy Modeling

Article Metrics:

  1. Kalogirou, M.; Pistikopoulos, P.; Ntziachristos, L.; and Samaras, Z. 2009. Isothermal soot oxidation experiments with intermediate gas change in a perkin-elmer TGA6. J. Therm. Anal. Cal. 95: 141–147. [http://dxx.doi.org/10.1007/s10973-008-9156-2" target="_blank">CrossRef]
  2. Lloyd, A.C.; and T.A. Cackette. 2001. Diesel Engines: Environmental Impact and Control. J. Air & Waste Manage. Assoc. 51: 809-847. [http://dx.doi.org/10.1080/10473289.2001.10464315" target="_blank">CrossRef]
  3. Walker, A.P. 2004. Controlling particulate emissions from diesel vehicles: A Review. Topics in Catal. 28: 165-170. [http://dx.doi.org/10.1023/B:TOCA.0000024346.29600.0e" target="_blank">CrossRef]
  4. Stamatelos, A.M. 1997. A review of the effect of particulate traps on the efficiency of vehicle diesel engines. Energy Convers. Mgmt. 38: 83-99. [http://dx.doi.org/10.1016/0196-8904(96)00011-8" target="_blank">CrossRef]
  5. Fino, D. 2007. Diesel emission control: A review of catalytic filters for particulate removal. Sci. & Technol. of Adv. Materials 8: 93-100. [http://dx.doi.org/10.1016/j.stam.2006.11.012" target="_blank">CrossRef]
  6. Lopez-Fonseca, R.; Elizundia, U.; Landa, I.; Gutie´rrez-Ortiz, M.A.; Gonza´lez-Velasco, J.R. 2005. Kinetic analysis of non-catalytic and Mncatalysed combustion of diesel soot surrogates. Appl. Catal. B 61: 150–158. [http://dx.doi.org/10.1016/j.apcatb.2005.04.016" target="_blank">CrossRef]
  7. Van Setten, B.A.A.L.; Schouten, J.M.; Makkee, M.; Moulijn, J.A. 2000. Realistic contact for soot with an oxidation catalyst for laboratory studies. Appl. Catal. B 28: 253-257. [http://dx.doi.org/10.1016/S0926-3373(00)00182-X" target="_blank">CrossRef]
  8. Darcy, P., Da Costa, P., Mellottée, H., Trichard, J.-M., Djéga-Mariadassou, G. (2007). Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catalysis Today, 119 (1-4): 252-256. [http://dx.doi.org/10.1016/j.cattod.2006.08.056" target="_blank">CrossRef]
  9. Stanmore, B.R.; Brilhac, J.F.; Gilot, P. 2001. The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39: 2247–2268. [http://dx.doi.org/10.1016/S0008-6223(01)00109-9" target="_blank">CrossRef]
  10. Dernaika, B.; Uner, D. 2003. A simplified approach to determine the activation energies of uncatalyzed and catalyzed combustion of soot. Appl. Catal. B 40: 219-229 [http://dx.doi.org/10.1016/S0926-3373(02)00152-2" target="_blank">CrossRef]
  11. Illekova, E.; and Csomorova, K.2005. Kinetics of oxidation in various forms of carbon. J. Therm. Anal. Cal. 80: 103-108. [http://dx.doi.org/10.1007/s10973-005-0620-y" target="_blank">CrossRef]
  12. Lopez-Fonseca, R.; Landa, I.; Gutierrez-Ortiz, M. A.; and Gonzalez-Velasco, J. R. 2005. Nonisothermal analysis of the kinetics of the combustion of carbonaceous materials, J. Therm. Anal. Cal.80: 65-69. [http://dx.doi.org/10.1007/s10973-005-0614-9" target="_blank">CrossRef]
  13. Mianowski, A.; Bigda, R. ; and Zymla, V. 2006. Study on kinetics of combustion of brick-shaped carbonaceous materials. J. Therm. Anal.Cal. 84: 563-574. [http://dx.doi.org/10.1007/s10973-005-6973-4" target="_blank">CrossRef]
  14. Neeft, J.; Hoornaert, F. ; Makkee, M.; and Moulijn, J. A.1996. The effects of heat and mass transfer in thermogravimetrical analysis. A case study towards the catalytic oxidation of soot. Thermochim. Acta, 287: 261-278. [http://dx.doi.org/10.1016/S0040-6031(96)03002-X" target="_blank">CrossRef]
  15. Stratakis, G. A.; and Stamatelos, A. M. 2003. Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame. 132: 157-169. [http://dx.doi.org/10.1016/S0010-2180(02)00432-7" target="_blank">CrossRef]
  16. Yezerets, A.; Currier, N. W.; and Eadler, H. A. 2003. Experimental Determination of the Kinetics of Diesel Soot Oxidation By OD2 - Modelling Consequences. SAE technical paper, 2003-01-0833
  17. Messerer, A.; Niessner, R.; and Poschl, U. 2006. Comprehensive kinetic characte- rization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: Measurement, Langmuir-Hinshelwood, and Arrhenius parameters. Carbon 44: 307-324. [http://dx.doi.org/10.1016/j.carbon.2005.07.017" target="_blank">CrossRef]
  18. Ahlstrom, A. F. and Odenbrand, C. U. I. Combustion characteristics of soot deposits from diesel engines.Carbon 1989, 27, 475-483. [http://dx.doi.org/10.1016/0008-6223(889)990080-8" target="_blank">CrossRef]

Last update: 2021-06-13 21:33:29

No citation recorded.

Last update: 2021-06-13 21:33:29

  1. Harnessing energy from Australian dairy waste: utilizing five methodologies

    Arefin M.A.. Biofuels, Bioproducts and Biorefining, 14 (6), 2020. doi: 10.1002/bbb.2126
  2. An overview of reactor designs for biodiesel production

    Garlapati V.K.. Bioenergy: Opportunities and Challenges, 2015. doi: 10.1201/b18718
  3. Online genetic-ANFIS temperature control for advanced microwave biodiesel reactor

    Wali W.A.. Journal of Process Control, 22 (7), 2012. doi: 10.1016/j.jprocont.2012.05.013
  4. Pyrolysis of biomass - fuzzy modeling

    Lerkkasemsan N.. Renewable Energy, 66 , 2014. doi: 10.1016/j.renene.2014.01.014
  5. Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review

    Ramachandran K.. Renewable and Sustainable Energy Reviews, 22 , 2013. doi: 10.1016/j.rser.2013.01.057
  6. A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production

    Oh P.. Renewable and Sustainable Energy Reviews, 16 (7), 2012. doi: 10.1016/j.rser.2012.05.014
  7. Optimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling

    Sohpal V.. Biofuel Research Journal, 1 (2), 2014. doi: 10.18331/BRJ2015.1.2.7
  8. Design and development of low-cost blood serum analyser using adaptive neuro fuzzy inference system

    Karthikeyan T.. International Journal of Biomedical Engineering and Technology, 15 (3), 2014. doi: 10.1504/IJBET.2014.064652
  9. Nano-magnetic catalyst CaO-Fe3O4 for biodiesel production from date palm seed oil

    Ali M.. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3), 2017. doi: 10.9767/bcrec.12.3.923.460-468