Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

*R. Prasad -  Department of Chemical Engineering & Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005, India
V.R. Bella -  Department of Chemical Engineering & Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005, India
Received: 18 Feb 2011; Published: 16 May 2011.
Open Access
Citation Format:
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 448 321
Abstract

CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.

(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010)

[How to Cite: R. Prasad, V.R. Bella. (2011). Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1): 15-21. doi:10.9767/bcrec.6.1.822.15-21]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822

| View in 

Keywords
Copper-ceria; Diesel soot; Catalytic combustion; Soot oxidation catalyst; Preparation methods

Article Metrics:

  1. Van Setten, B. A. A. L.; Makkee, M.; and Moulijn, J. A. 2001. Science and technology of catalytic diesel particulate filters. Catalysis Reviews 43: 489-564. [CrossRef]
  2. Neeft, J. P. A.; Makkee, M.; and Moulijn, J. A. 1996. Diesel particulate emission control. Fuel Processing Technology 47: 1-69. [CrossRef]
  3. Fino, D.; Fino, P.; Saracco, G.; and Specchia, V. 2003. Studies on kinetics and reactions mechanism of La2−xKxCu1−yVyO4 layered perovskites for the combined removal of diesel particulate and Nox. Appl. Catal. B 43: 243-259. [CrossRef]
  4. Pisarello, M. L.; Milt, V.; Peralta, M. A.; Querini, C. A.; and Miro, E. E. 2002. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catal. Today 75: 465-470. [CrossRef]
  5. Neeft, J. P. A.; Schiper, W.; Makkee, M.; and Moulijn, J. A. 1997. Feasibility Study towards a Cu/K/Mo/(Cl) soot Oxidation Catalyst for Application in Diesel Exhaust Gases. Appl Catal B 11: 365-382. [CrossRef]
  6. Uchisawa, J. O.; Obuchi, A.; Wang, S.; Nanba, T.; and Ohi, A. 2003. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl. Catal. B 43: 117-129. [CrossRef]
  7. Uchisawa, J. O.; Wang, S.; Nanba, T.; Ohi, A.; and Obuchi, A. 2003. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Appl. Catal. B 44: 207-215. [CrossRef]
  8. Hinot, K.; Burtscher, H.; Webe, A. P.; and Kasper, G. 2007. The effect of the contact between platinum and soot particles on the catalytic oxidation of soot deposits on a diesel particle filter. Appl. Catal. B 71: 271-278. [CrossRef]
  9. Teraoka, Y.; Kanada, K.; and Kagawa, S. 2001. Synthesis of La-K-Mn-O perovskitetype oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl. Catal. B 34: 73-78. [CrossRef]
  10. Peng, X.; Lin, H.; Shangguan, W.; and Huang, Z. 2007. A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot. Catal. Commun.8: 157-161. [CrossRef]
  11. Shangguan, W. F.; Teraoka, Y.; and Kagawa, S. 1998. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B 16: 149-154. [CrossRef]
  12. Liu, J.; Zhao, Zh.; Xu, Ch. M.; Duan, A. J.; Zhu, L.; and Wang, X. Zh. 2005. Diesel soot oxidation over supported vanadium oxide and K-promoted vanadium oxide catalysts. Appl Catal B 61: 36-46. [CrossRef]
  13. Zhu, L.; Wang, X. Zh.; Yu, J .J.; and Hao, Z. P. 2005. Catalytic performance of KCe0.5Zr0.5O2 catalysts for soot combustion. Acta Phy-Chim Sin 21: 840-845.
  14. Tikhomirov, K.; Krocher, O.; Elsener, M.; and Wokaun, A. 2006. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Appl. Catal. B 64: 72-78. [CrossRef]
  15. Reddy, B. M.; and Rao, K. N. 2009. Copper promoted ceria-zirconia based bimetallic catalysts for low temperature soot oxidation. Catal. Commun. 10: 1350-1353 [CrossRef]
  16. Castoldi, L.; Matarrese, R.; Lietti, L.; and Forzatti, P. 2006. Simultaneous removal of NOx and soot on Pt–Ba/Al2O3 NSR catalysts. Appl. Catal. B 64: 25-34. [CrossRef]
  17. Matarrese, R.; Castoldi, L.; Lietti, L.; and Forzatti, P. 2007. High performances of Pt-K/Al2O3 versus Pt-Ba/Al2O3 LNT catalysts in the simultaneous removal of NOx and soot. Top. Catal. 42-43: 293-297. [CrossRef]
  18. Lopez-Suarez, F. E.; Bueno-Lopez, A.; and Illan-Gomez M. J. 2008. Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Appl.Catal. B 84: 651-658. [CrossRef]
  19. Fu, M., Yue, X., Ye, D., Ouyang, J., Huang, B., Wu, J., Liang, H. (2010). Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis. Catal. Today, 153 (3-4), pp. 125-132. [CrossRef]
  20. Liang, Q.; Wu, X.; Weng, D.; and Lu, Z. 2008. Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. Catal. Commun. 9: 202-206. [CrossRef]
  21. Harrison, P. G.; Ball, I. K.; Daniell, W.; Lukinskas, P.; Cespedes, M.; Miro, E. E.; and Ulla, M. A. 2003. Cobalt catalysts for the oxidation of diesel soot particulate. Chem. Eng. J. 95: 47-55. [CrossRef]
  22. Liang, Q.; Wu, X.; Weng, D.; and Xu, H. 2008. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catal. Today 139:113-118. [CrossRef]
  23. Wu, X.; Liang, Q.; Weng, D.; and Lu, Z. 2007. The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catal. Commun. 8: 2110-2114. [CrossRef]
  24. Prasad, R.; and Rattan, G. 2010. Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bull. Chem. Reac. Eng. & Catal. 5: 7-30. [CrossRef]
  25. Yue, X; Zhang, X.; Fu, M.; Huang, B.; Liang, H.; and Ye, D. 2009. Effect of SO2 on soot oxidation over LaO.8K0.2Cu0.05Mn0.95O3 perovskites-type catalyst. Chin. J. Inorg. Chem. 25: 1170-1176.
  26. Avgouropoulos, G.; and Ioannides, T. 2003. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Appl. Catal. A 244:155-167. [CrossRef]
  27. Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; and Flytzani-Stephanopoulos, M. 2003. Gold-ceria catalysts for low-temperature water-gas shift reaction. Chem. Eng. J. 93: 41-53. [CrossRef]
  28. Serra, V.; Saracco, G.; Badini, C.; and Specchia, V. 1997. Combustion of carbonaceous materials by Cu-K-V based catalysts: II. Reaction mechanism. Appl. Catal. B 11: 329-346. [CrossRef]
  29. Querini, C.; Ulla, M.; Requejo, F.; Soria, J.; Sedran, U.; and Miro, E. 1998. Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co,K/MgO catalysts. Appl. Catal. B 15: 5-19. [CrossRef]
  30. Shangguan, W. F.; Teraoke, Y.; and Kagawa, S. 1997. Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe2O4 catalyst. Appl. Catal. B 12: 237-247. [CrossRef]
  31. Prasad, R.; and Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal. 4: 5-9. [CrossRef]