Applications and Preparation Methods of Copper Chromite Catalysts: A Review

*Ram Prasad  -  Department of Chemical Engineering and Technology, Institute of Technology,, India
Pratichi Singh  -  Department of Chemical Engineering and Technology, Institute of Technology,, India
Received: 19 Mar 2011; Published: 22 Nov 2011.
Open Access
Citation Format:

In this review article various applications and preparation methods of copper chromite catalysts have been discussed. While discussing it is concluded that copper chromite is a versatile catalyst which not only catalyses numerous processes of commercial importance and national program related to defence and space research but also finds applications in the most concerned problem worldwide i.e. environmental pollution control. Several other very useful applications of copper chromite catalysts are in production of clean energy, drugs and agro chemicals, etc. Various preparation methods about 15 have been discussed which depicts clear idea about the dependence of catalytic activity and selectivity on way of preparation of catalyst. In view of the globally increasing interest towards copper chromite catalysis, reexamination on the important applications of such catalysts and their useful preparation methods is thus the need of the time. This review paper encloses 369 references including a well-conceivable tabulation of the newer state of the art. Copyright © 2011 by BCREC UNDIP. All rights reserved.

(Received: 19th March 2011, Revised: 03rd May 2011, Accepted: 23rd May 2011)

[How to Cite: R. Prasad, and P. Singh. (2011). Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2): 63-113. doi:10.9767/bcrec.6.2.829.63-113]

[How to Link / DOI: || or local: ]

| View in 

Keywords: Copper chromite; Applications; Preparation methods; Review
Funding: Department of Science and Technology, India

Article Metrics:

  1. Rao, R.; Dandekar, A.; Baker, R.T.K.; and Vannice, M.A.; 1997. Properties of Copper Chromite Catalysts in Hydrogenation Reactions. J. Catal. 171: 406-419.
  2. Prasad, R. 2005. Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate. Mater. Lett. 59: 3945-3949.
  3. Ma, Z.; Xiao, Z.; Bokhoven, J.A.V.; and Liang, C. 2010. A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion. J. Mater. Chem. 20:755-760.
  4. George, K.; Sugunan, S.; 2008. Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catal. Commun. 9: 2149-2153.
  5. Barman, S.; Acharya, N.C.P.A.; and Pramanik, P. 2006. Kinetics of Reductive Isopropylation of Benzene with Acetone over Nano-Copper Chromite-Loaded H-Mordenite. Ind. Eng. Chem. Res. 45: 3481-3487.
  6. Wang, H.; Chen, L.; Luan, D.; Li, Y.; Yan, Z.; Zhang, Y.; and Xing,J. 2006. A continuous process for the synthesis of homopiperazine catalyzed by cu-based catalysts, React. Kinet. Catal. Lett. 89: 201-208.
  7. Green, R.V.; and Moses, D.V. 1952. Destructive catalytic oxidation of aqueous waste materials. Sewage and Indust. Wastes 24: 288-299.
  8. Vlasenko, V.M; and Chernobrivets, V.L. 2002. Catalytic purification of gases to remove vinyl chloride. Russian J. Appl. Chem.75: 1262-31264.
  9. Laine, J.; Severino, F. 1990. Changes in alumina-supported copper and copper-chromite catalysts by the introduction of water during carbon monoxide oxidation. Appl. Catal. 65 (2): 253-258.
  10. Wei, L.; Hua, C. 2007. Synthesis and characterization of Cu-Cr-O nanocomposites. J. Cent. South Univ. Technol.: 03-0291-05.
  11. Saadi, S.; Bouguelia, A.; Trari, M.; 2006. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co.). Renew. Energ. 31: 2245-2256.
  12. Yan J.; Zhang, L.; Yang, H.; Tang Y.; Lu Z.; Guo S.; Dai Y.; Han Y.; Yao, M.; 2009. CuCr2O4/TiO2 Heterojunction for photocatalytic H2 evolution under simulate sunlight irradiation. Sol. Energy 83: 1534-1539.
  13. Boumaza, S.; Bouarab, R.; Trari, M.; Bouguelia, A. 2009. Hydrogen photo-evolution Over the spinel CuCr2O4. Energ. Convers. Manage. 50: 62-68.
  14. Valde´s-Soli´s, T.; Marba´n, G.; Fuertes, A.B. 2006. Nanosized catalysts for the production of hydrogen by methanol steam reforming. Catal. Today 116: 354-360.
  15. Boumaza S.; Auroux, A.; Bennici, S.; Boudjemaa, A.; Trari, M.; Bouguelia,A.; Bouarab, R. 2010. Water gas shift reaction over the CuB2O4 spinel catalysts. Reac Kinet Mech Cat 100:145-151.
  16. Ginosar, D. M.; Rollins, H. W.; Petkovic, L. M.; Burch, K. C.; Rush, M. J.; 2009. High-temperature sulfuric acid decomposition over complex metal oxide catalysts. Int. J. Hydrogen Energ. 34: 4065 - 4073.
  17. Maniecki, T.P.; Mierczynski, P.; Maniukiewicz, W.; Bawolak, K.; Gebauer, D.; Jozwiak, W.; 2009. Bimetallic Au-Cu, Ag-Cu/CrAl3O6 Catalysts for Methanol Synthesis. Catal. Lett. 130: 481-488.
  18. Pattiya, A.; Titiloye, J.O.; Bridgwater, A.V. 2008. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. Appl. Pyrolysis 81: 72-79
  19. Latha B.M.; Sadasivam, V.; Sivasankar, B.; 2007. A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts. Catal. Commun. 8: 1070-1073.
  20. Hubaut, R.; Study of the Competitive Reactions between α-β-Unsaturated Aldehyde and Allylic Alcohol on a Copper Chromite Catalyst. 1992a. React. Kinet. Catalo Left. 46: 25-32.
  21. Li Z.; and Flytzani-Stephanopoulos, M.; 1997. Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization. Ind. Eng. Chem. Res. 36:187-196.
  22. Chang, Y.; Tsen, H.; Chen, M.; and Lee, M.; 2001. A Study on The MOCVD Mechanism of Inverse Spinel Copper Ferrite Thin Films. Mat. Res. Soc. Spring Meeting, symposium U1.9.
  23. Xiong, W.; Kale, G.M. 2006. High-selectivity mixed-potential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple. Sensors Actuator B 119: 409-414.
  24. Li, D.; Fang, X.; Dong, W.; Deng, Z.; Tao, R.; Zhou, S.; Wang, J.; Wang, T.; Zhao, Y.; and Zhu, X.; 2009. Magnetic and electrical properties of p-type Mn-doped CuCrO2 Semiconductors. J. Phys. D: Appl. Phys. 42: 055009 (6pp).
  25. Cui, H.; Zayat, M. and Levy, D. 2005. Sol-Gel synthesis of nanoscaled spinels using sropylene oxide as a gelation agent. J. Sol-Gel Sci. Technol. 35: 175-181.
  26. Plyasova, L. M.; Molina, I. Yu.; Kriger, T. A.; Davydova, L. P.; Malakhov, V. V.; Dovlitova, L. S.; and Yur‟eva, T. M. 2001. V. Interaction of hydrogen with copper-containing oxide catalysts: v. structural transformations in copper chromite during reduction-reoxidation. Kinet. Catal. 42: 126-131.
  27. Rioux, R.M.; and. Vannice, M.A. 2003. Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts. J. Catal. 216: 362-376.
  28. Kim, N. D.; Oh, S.; Joo, J. B.; Jung, K. S.; and Yi J. 2010. Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis. Korean J. Chem. Eng. 27: 431-434.
  29. Sansare, S.D. 1983. Studies on the poisoning of copper chromite catalyst by thiophene. Univ of Bombay, India.
  30. Mohan, D. 2003. Automotive exhaust pollution control studies on carbon monoxide oxidation over base metal catalysts. Ph.D. Thesis, Banaras Hindu University, India
  31. Natesakhawat, M. 2005. Investigation of active sites and reaction networks in catalytic hydrogen production: steam reforming of lower alkanes and the water-gas shift reaction. Degree Doctor of Philosophy in the Graduate School of the Ohio State University.
  32. Chiu, C-W. 2006. Catalytic conversion of glycerol to propylene glycol: synthesis and technology assessment, Ph.D. Thesis, Faculty of the Graduate School University of Missouri- Columbia.
  33. Dasari, M.A.; 2006. Catalytic conversion of glycerol and sugar alcohols to value-added products. Ph.D. Thesis, Faculty of the Graduate School University of Missouri-Columbia.
  34. Frainier, L.J.; Herman, H. US Patent 1981.Fineberg; Copper chromite catalyst for preparation of furfuryl alcohol from furfural. Patent No.: 4,251,396.
  35. Strom, R.M.; US Patent 1982. Copper chromite catalyst for oxidative coupling phenols. Patent No.: 4,354,048,1982.
  36. Chaudhari, R.V.; Jaganathan, R.; Chaudhari, S.T.; Rode, C.V. US Patent 2006. Process for the preparation of copper chromite catalyst. Patent No. 7,037,877B1.
  37. Barnicki, S.D.; Gustafson, B.L.; Liu, Z.; Perri, S.T.; Worsham, P.R. US Patent 2008. Ruthenium-Copper chromite hydrogenation catalyst. Patent No.: US 2008/0194398A1.
  38. Barnicki, S.D.; Gustafson, B.L.; Liu, Z.; Perri, S.T.; Worsham, P.R. US Patent 2008. Palladium-Copper chromite hydrogenation catalyst. Patent No.: US 2008/0194398A1.
  39. Pramottana, M.; Praserthdam, P.; and Ngamsom, B. 2002. Copper chromite catalyst for the selective hydrogenation of furfural to furfuryl alcohol. J. Chin. Inst. Chem. Engrs. 33: 477-481.
  40. Huang, X.; Cant, N.W.; Wainwright, M.S.; Ma, L. 2005. The dehydrogenation of methanol to methyl formate Part I: Kinetic studies using copper-based catalysts. Chem. Eng. Processing 44: 393-402.
  41. Solov‟ev, S.A.; and Orlik, S. N. 2009. Structural and functional design of catalytic converters for emissions from internal combustion engines. Kinet. Catal. 50: 705-714.
  42. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. John Wiley & Sons, Inc. NewYork. 2001.
  43. Choudhary, V.R.; and Pataskar, S.G. 1979. Thermal Analysis of Ammonium Copper Chromate. J. Thermal Anal. 17: 45-56.
  44. Adkins, H.; Connor, R. 1931. The catalytic hydrogenation of organic compounds over copper chromite. J. Am. Chem. Soc. 53: 1091-1095.
  45. Liawa, B.J.; Chen, Y.Z. 2000. Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups. Appl. Catal. A: Gen. 196: 199-207.
  46. Hubaut, R.; Bonnelle, J.P.; and Daage, M. 1989. Selective hydrogenation of heavy polyunsaturated molecules on copper-chromium catalysts. J. Molec. Catal. 55: 170-183.
  47. Narasimhan, V.; Patnaik, P.; and Ramamurthy, S. 1987. Proc. 8th Nat. Syrup. on Catalysis, Sindri February, India.
  48. Hubaut, R.; Daage, M.; and Bonnelle, J.P.; 1986. Selective hydrogenation on copper chromite catalysts. Appl. Catal. 22: 243- 255.
  49. Bezelgues, J-B.; Dijkstra A.J. 2009. Formation of trans fatty acids during catalytic hydrogenation of edible oils. In: Destaillats, F.; Se´be´dio, J-L.; Dionisi, F.; Chardigny, J-M. (eds). Trans fatty acids in human nutrition. The Oily Press, Bridgwater: 43-64.
  50. Beers, A.; Mangnus, G.; 2004. Hydrogenation of edible oils for reduced trans-fatty acid content. Inform 15: 404-405.
  51. Rangel, E.R. 2005. Contribution to the Study of Heterogeneous Catalytic Reactions in SCFs: Hydrogenation of Sunflower Oil in Pd Catalysts at Single-Phase Conditions. Ph.D. Thesis, Universitat Politècnica de Catalunya, France.
  52. Alonzo, L.; Fraga, M.J.; Juarez, M. 2000. Determination of trans Fatty Acids in Margarines Marketed in Spain. J. Am. Oil Chem. Soc. 77: 131-136.
  53. List, G.R. 2004. Decreasing trans and Saturated Fatty Acid Content in Food Oils. Food Technol. 58: 23-31.
  54. Satchithanandam, S.; Oles, C.J.; Spease, C.J.; Brandt, M.M.; Yurawecz, M.P.; Rader, J.I. 2004. Trans, Saturated and Unsaturated Fat in Foods in the United States Prior to Mandatory trans-fat Labeling. Lipids. 39: 11-18.
  55. Tarrago-Trani, M.T.; Phillips, K.M.; Lamar, L.E.; Holden, J.M. 2006. New and Existing Oils and Fats Used in Products with Reduced trans Fatty Acid Content. J. Am. Dietetic Assoc. 106: 867-880.
  56. Floter, E.; Van Dujin, G. 2006. Trans free fats for use in food. In Modifying Lipids for use in foods. F.D. Gunstone, Ed., Woodhead Publishing Ltd.: Cambridge, England, 492-443.
  57. Annemarie ,E.W.; and Beers Beers. 2007. Low trans hydrogenation of edible oils. Lipid Technol. 9(3): 56-58.
  58. Koritala, S.; Butterfield, R.O.; Dutton, H.J. 1973. Kinetics of hydrogenation of conjugated triene and diene with nickel, palladium, platinum and copper-chromite catalysts. J Am Oil Chem Soc 50: 317-320.
  59. Koritala, S; and Dutton, H.J. 1969. Selective Hydrogenation of Soybean Oil. IV. Fatty Acids Isomers Formed With Copper Catalysts. J. Am. Oil Chem. Soc. 46: 245-248.
  60. [60] Kirschner, E.; and Lowrey, E.R. 1970. J. Am. Oil Chem. Soc. 47: 467
  61. Mounts, T.L.; Koritala, S.; Friedrich, J.P.; and Dutton, H.J. 1978..Selective hydrogenation of soybean oil: IX. Effect of pressure in copper catalysis. J. Am. Oil Chem. 55: 402-406.
  62. Johansson, L.E. 1979. Copper Catalysts in the Selective Hydrogenation of Soybean and Rapeseed Oils: III. The Effect of Pressure when using Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 56: 987-991.
  63. Koritala, S.; Friedrich, J.P.; and Mounts, T.L. 1980. Selective Hydrogenation of Soybean Oil: X. Ultra High Pressureand Low Pressure. J. Am. Oil Chem. 57: 1-5.
  64. Johansson, L.E.; and Lundin, S.T. 1979. Copper Catalysts in the Selective Hydrogenation of Soybean and Rapeseed Oils: I. The Activity of the Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 56: 974-980.
  65. Miya, B.; Hoshino, F.; and lwasa,I. 1966. Studies on the copper chromite catalyst: III. Increase in the activity of the copper chromite catalyst by the water-gas reaction. J. Catal. 5: 401-411 (1966).
  66. Moulton, K.J.; Beal, R.E.; and Griffin, E.L.; 1971. Hydrogenation of Soybean Oil With Commercial Copper-Chromite and Nickel Catalysts: Winterization of Low-Linolenate Oils. J. Am. Oil Chem. Soc. 48: 499-502.
  67. Gray, S.I.; and Russell, L.F. 1979. J. Amer. Oil.Chem. Soc. 56: 36.
  68. Cowan, J.C.; Koritala, S.; Warner, K.; List, G.B.; Moulton, K.J.; and Evans, C.D. 1973. Copper-Hydrogenated Soybean and Linseed Oils: Composition, Organoleptic Quality and Oxidative Stability. J. Amer. Oil Chem. Soc. 50(5): 132-136.
  69. Fragale, C.; Gargano, M.; and Rossi, M.; 1982. Catalytic Hydrogenation of Vegetable Oils: II. The activity of the Prereduced Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 59: 465-469.
  70. Capece, F.M.; Castro, V.D.; Furlani, C.; Mattogno, G.; Fragale, C.; Gargano, M.; and, Rossi, M.; 1982. Copper chromite Catalysts: XPS structure elucidation and correlation with catalytic activity. J Electron Spectro. 27(2): 119-128.
  71. Rieke, R.D.; Thakurb, D.S.; Robertsb, B.D.; and White, G.T.; 1997. Fatty Methyl Ester Hydrogenation to Fatty Alcohol Part I: Correlation between catalyst properties and activity/selectivity. J Am Oil Chem Soc. 74: 333-339.
  72. Szukalska, E.; and Drozdowski, B. 1982. Selective Hydrogenation of Rapeseed Oils with Copper-Chromite Catalyst: Influence of Erucic Acid. J. Am. Oil. Chem. Soc. 59(3): 134 -139.
  73. Lazier, W. A.; and Arnold, H. R. 1965. Organic Synthesis, Vol. II (John Wiley & Sons Inc, New York): 142.
  74. Rao M.V.R.K. 1965. Hydrogenation of Aromatic Compounds. Suppl. Def. Sci. J: 131-136.
  75. Pandey, A. 1997. Studies on Adkin‟s catalysts and their performance in vapour phase hydrogenation of nitrobenzene to aniline. Ph.D Thesis. Dept. Of Chem. Eng. and Technol, Banaras Hindu University, India.
  76. Eley, D.D. 1968. Advances in Catalysis Vol. 18, Academic press inc. NY (London) Ltd.
  77. Mo¨bus, K.; Wolf, D.; Benischke, H.; Dittmeier, U.; Simon, K.; Packruhn, U.; Jantke, R.; Weidlich, S.; Weber, C.; Chen, B. 2010 . Hydrogenation of Aromatic Nitrogroups with Precious metal powder catalysts: Influence of Modifier on Selectivity and Activity. Top Catal. 53:1126-1131.
  78. Wknlak, J.; and Klein, M. 1984. Reduction of Nitrobenzene to Aniline. Ind. Eng. Chem. Prod. Res. Dev. 23(1): 44-50.
  79. Choudhary, V.R.; Sansare, S.D.; Thite, G.A. 1988. Adsorption of Reaction Species for Hydrogenation of Nitrobenzene on Copper Chromite at Catalytic Conditions. J. Chem. Tech. Biotechnol. 42: 249-260.
  80. Fang, X.; Yao, S.; Qing, Z.; Li, F. 1997. Study on silica supported Cu-Cr-Mo nitrobenzene hydrogenation catalysts. Appl. Catal. A: Gen. 161: 129-135.
  81. Keki, H.; Ghardal and Sliepcevich, C.M. 1960. Copper catalysts in hydrogenating nitrobenzene to aniline. Ind. Eng. Chem. 52 (5): 417-420.
  82. Jebarathinam, N.; Eswaramoorthy, M.; Krishnasamy, V.; 1996. Effect of substitution of Fe3+ in CuCr2O4 matrix for the hydrogenation of nitrobenzene. React. Kin. Catal. Lett. 58: 291-298.
  83. Wiegers, W.J.; Spencer, M.A; Schreiber, W.L. 1986. Process for preparing mixture containig 2-campholenylidenbutanol, Product produced thereby and perfumery uses thereof. US Patents 4,619,781.
  84. Giersch, W.K.; Ohloff, G. 1989 Bicylclic aliphatic alcohols and their utilization as perfuming ingredients. US Patents 4,818,747.
  85. Shapiro, S. H. 1968. Fatty Acids and Their Industrial Applications, Marcel Dekker, Inc., New York: 123-128.
  86. Billenstein, S.; and Blaschke, G. 1984. Industrial Production of Fatty Amines and Their, Derivatives. J. Amer. Oil Chem. Soc. 61: 353-357.
  87. Gervajio, G.C. 2005. Fatty Acids and Derivatives from Coconut Oil. Bailey’s Industrial Oil and Fat Products, Sixth Edition, Six Volume Set. John Wiley & Sons, Inc.
  88. Adkins, H. Reactions of Hydrogen with Organic Compounds over Copper-Chromium Oxide and Nickel Catalysts; Univ. Wisconsin Press: Madison, 1937; p 50.
  89. Huang, W.; Li, H.; Zhu, B.; Feng, Y.; Wang, S.; Zhang, S. 2007. Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry. Ultrason. Sonochem. 14: 67-74.
  90. Yurieva, T.M.; 1999. Mechanisms for activation of hydrogen and hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts. Catal. Today 51: 457-467.
  91. Kang, H-C.; Lee, S-H.; Park, J-M.; Kim, D-P.; and Lee, B.M. 2009. Hydrogenation of Methyl Dodecanoate Using Copper Chromite. J. Korean Ind. Eng. Chem. 20(2): 201-207.
  92. Shreiber, E.H.; Roberts, G.W.; 2000. Methanol dehydrogenation in a slurry reactor: evaluation of copper chromite and iron/titanium catalysts. Appl. Catal. B: Env. 26: 119-129.
  93. Minyukova, T.P.; Simentsova, I.I.; Khasin, A.V.; Shtertser, N.V.; Baronskaya, N.A.; Khassin, A.A.; Yurieva, T.M.; 2002. Dehydrogenation of methanol over copper-containing catalysts. Appl Catal A: Gen. 237: 171-180.
  94. Tonner, S.P.; Wainright, M.S.; Trimm, D.L.; Cant, N.W. 1984. Characterization of copper chromite catalysts for methanol dehydrogenation. Appl. Catal. 11: 93-101.
  95. Rao, V.M.; Shankar, V. 1988. High activity copper catalyst for one-step conversion of methanol to methyl formate at low temperature. J. Chem. Tech. Biotechnol 42: 183-196.
  96. Chono, M; Yamamoto, T. 1981. The synthesis of formaldehyde, methyl formate and hydrogen cynide. Shokubai 23(1): 3-8.
  97. Tu, Y.J.; Chen, Y.W.; and Li, C.; 1994. Characterization of unsupported copper-chromium catalysts for ethanol dehydrogenation. J. Molec. Catal. 89(1-2): 179-18.
  98. Chang, F-W.; Kuo, W.-Y.; Yang, H.-C. 2005. Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation. Appl. Catal. A: 288: 53-61.
  99. Chang, F.W.; Yang, H.C.; Roselin, L.S.; Kuo, W.Y.; 2006. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl. Catal. A: Gen. 304: 30-39.
  100. Pillai, R.B.C.; 1994. A study of the preactivation of a copper chromite catalyst. Catal. Lett. 26: 365-371.
  101. Mooney, J.J. 1994. Exhaust control, automotive, in: Kirk-Othmer Encyclopedia of Chemical Technology 9, 4th Edition,Wiley/Interscience, New York: 982.
  102. Rao, U.R.; Rajinderkumar; and Kuloor, N.R. 1969. Dehydrogenation of butyl alcohol in fixed catalyst beds. I&EC process design and develop. 8: 9-16 .
  103. Wang Z.; Ma H.; Zhu W.; Wang G. 2002. Characterization of Cu-ZnO-Cr2O3/SiO2 catalysts and application to dehydrogenation of 2-butanol to 2-butanone. React. Kinet. Catal. Letters 76 (2): 271-279(9).
  104. Shiau, C.Y.; Lee, Y.R. 2001. Characterization and dehydrogenation activity of Cr-added electroless plated copper catalyst. Appl. Catal..A: Gen. 220: 173-180.
  105. Crivello, M.; Pe´rez, C.; Ferna´ndez, J.; Eimer, J.; Herrero, E.; Casuscelli, S.; Rodrı´guez-Castello´n, E. 2007. Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol. Appl. Catal. A: Gen. 317: 11-19.
  106. Liang, C.; Ma, Z.; Ding, L.; Qiu, J. 2009. Template Preparation of Highly Active and Selective Cu–Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis. Catal. Lett. 130: 169-176.
  107. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; and Lindner, F.; 2008. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem.10: 13-30.
  108. Yang, L.; Joo, J.B.; Kim, Y.J.; Oh, S.; Kim, N.D.; and Yi, J. 2008. Synthesis of superacidic mesoporous alumina and its application in the dehydration of glycerol. Korean J. Chem. Eng. 25: 1014- 1017.
  109. Song, S.H.; Lee, S.H.; Park, D. R.; Kim, H.; Woo, S.Y.; Song, W. S.; Kwon, M. S.; and Song, I.K. 2009. Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in a solvent-free batch reactor: Effect of experimental conditions. Korean J. Chem. Eng., 26: 382-386.
  110. Dasari, M.A.; Kiatsimkul, P.; Sutterlin, W.R.; Suppes, G.J.; 2005. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A: Gen. 281: 225-231.
  111. Chiu, W.; Dasari, M.A.; Sutterlin, W.R.; and Suppes, G.J.; 2006. Removal of Residual Catalyst from Simulated Biodiesel‟s Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol. Ind. Eng. Chem. Res. 45: 791-795.
  112. Chiu, C-W.; Tekeei, A.; Ronco, J.M.; Banks, M-L.; and Suppes, G.J. 2008. Reducing Byproduct Formation during Conversion of Glycerol to Propylene Glycol. Ind. Eng. Chem. Res. 47: 6878-6884.
  113. Dovell, F. S.; and Greenfield, H.; 1962. Copper chromite catalysts forreductive alkylation. I & E C Product Research and Development. 1(3): 179-181.
  114. Ward, S.; Lamb, S. A.; Hodgson: M. A. E. (to ICI). Brix. Patent 712,100 (July 21, 1954); Ward, S., Lamb, S. A. (to ICI), Brit. Patent 716,239 (1954).
  115. Tsushima, R. 1997. Surfactants products from oleochemicals. Inform 8: 362-365.
  116. Hark, S. V. D.; Härröd, M. 2001 Hydrogenation of oleochemicals at supercritical single-phase conditions: influence of hydrogen and substrate concentrations on the process. Appl. Catal. A: Gen. 210: 207-215.
  117. Choudhary, V.R.; Dumbre, D.K.; Uphade, B.S.; Narkhede, V.S. 2004. Solvent-free oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide using transition metal containing layered double hydroxides and/or mixed hydroxides. J Mole Catal A: Chem. 215: 129-138.
  118. George, K.; Sugunan, S.; 2008. Catalytic oxidation of cyclohexane over Cu-Zn-Cr ternery spinel system. React. Kinet. Catal. Lett. 94(2): 252-260.
  119. Barman, S.; Acharya, N.C.P.A.; Pramanik, P. 2006. Kinetics of Reductive Isopropylation of Benzene with acetone over Nano-Copper Chromite-Loaded H-Mordenite. Ind. Eng. Chem. Res. 45: 3481-3487.
  120. Pillai, R. B. C. 1994. Reductive alkylation of aniline over copper chromite catalyst: optimization of reaction conditions. Indian J. Chem. Sec. A, 33A (10): 941-943.
  121. Pillai, R. B. C. 1993. References and further reading may be available for this article. To view references and further reading you must purchase this article.Synthesis of secondary amines by reductive alkylation using copper chromite catalyst: Steric effect of carbonyl compounds. J. Molec. Catal. 84(1): 125-129 .
  122. Rudolf, Z.; Paul, N.; Gerhard, F.; Herbert, D.1997: U.S. Patent 5639886.
  123. Moree, W.J.; Ramirez-Weinhouse, M.M.; Shiota, T.; Imai, M.; Sudo, M.; Tsutsumi, T.;Endo, N.; Muroga, Y.; Hada, T.; Tanaka, H.; Morita, T.; Greene, J.; Barnum, D.; Saunders, J.; Kato, Y.; Myers, PL.; Tarby, CM. 2004. Small molecule antagonists of the CCR2b receptor. Part 2: Discovery process and initial structure-activity relationships of diamine derivatives. Bioorg. Med. Chem. Lett. 14: 5413.
  124. Bai, G.; Li, Y.; Yan, X.; He, F.; and Chen, L. 2004. High efficiency cu-based catalysts for the cyclization of alkanolamines. React. Kinet. Catal. Lett. 82(1): 33-39.
  125. Moss, P.H.; Bell, N. 1962. US Patent 3037023.
  126. Armor, J.N.; 1999. The multiple roles for catalysis in the production of H2. Appl. Catal. A: Gen. 176: 159-176.
  127. Baykara S.Z. 2004. Hydrogen production by direct solar thermal, decomposition of water, possibilities for improvement of process efficiency. Int J Hydrogen Energ. 29:1451-8.
  128. Marshall, A.; Sunde, S.; Tsypkin, M.; and Tunold, R. 2007. Performance of a PEM water electrolysis cell using IrxRuyTazO2 electocatalysts for the oxygen evolution electrode. Int. J. Hydrogen Energy 32: 2320-2324.
  129. Saadi, S.; Bouguelia, A.; Trari, M. 2006. Photocatalytic hydrogen evolution over CuCrO2. Sol. Energy 80: 272-280.
  130. Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.; 2007. CuAlO2/TiO2 heterojunction applied to visible light H2 production. J. Photochem. Photobiol. A: Chem. 186: 242-247.
  131. Zhang, P.; Chen, S.Z.; Wang, L.J.; Xu, J.M.; 2010. Overview of nuclear hydrogen production research through iodine sulfur process at INET. Int. J. Hydrogen Energy 35: 2883-2887.
  132. Tagawa H.; and Endo T.; 1989. Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. Int. J. Hydrogen Energy 14(1): 11-17.
  133. Bond, G.C. (Ed.), 2005. Metal-catalyzed Reactions of Hydrocarbons, Springer, New York, NY,.
  134. Rostrup-Nielsen, J.R.; 2001. Conversion of hydrocarbons and alcohols for fuel cells. Phys. Chem. Chem. Phys. 3: 283-288.
  135. Hohn, K. L.; and Lin. Y-C.; 2009. Catalytic Partial Oxidation of Methanol and Ethanol for Hydrogen Generation. Chem. Sus. Chem. 2: 927-940.
  136. Prasad. R.1984. Syudies on compression moulded copper based catalysts and their performance in dehydrogenation of ethanol. Ph.D. Thesis, Banaras Hindu University, India.
  137. Cheng, W.H.; Kung, H.H.; Cheng, W.H.; Kung, H.H. (Eds.), 1994. Methanol Production and Use, Chap. 1, Marcel Dekker, New York,.
  138. Cheng, W.H. 1999. Development of Methanol Decomposition Catalysts for Production of H2 and CO. Acc. Chem. Res., 32: 685-691.
  139. Yoon, H.; Stouffer, M.R.; Dubt, P.J.: Burke, F.P.; Curran, G.P. 1985. Methanol Dissociation for Fuel Use. Energy Prog. 5: 78-83.
  140. Pattersson, L.; Sjostrom, K. 1991. Decomposed Methanol as a Fuel-a Review. Combust. Sci. Technol. 80: 265-303.
  141. Carrette, L.; Friedrich, K.A.; Stimming, U. 2001. Fuel Cells: Fundamentals and Applications. Fuel Cells 1(1): 5-38.
  142. Ma, L.; Gong, B.; Tran, T.; Wainwright, M.S.; 2000. Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal. Today 63: 499-505.
  143. Ho¨hlein, B.; Boe, M.; Bogild-Hansen, J.; Bro¨ckererhoff, P.; Colsman, G.; Emonts, B.; Menzer, R.; Riedel, E.; 1996. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer. J. Power Sources 61: 143-147.
  144. de Wild, P.J.; Verhaak, M.J.F.M.; 2000. Catalytic production of hydrogen from methanol. Catal. Today 60: 3-10.
  145. Huang, X.; Ma, L.; Wainwright, M.S. 2004. The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl. Catal. A: Gen. 257: 235-243
  146. Cheng, W-H.; Chen, I.; Liou, J.-S.; and Lin, S-S.; 2003. Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol. Top Catal. 22: 3-4.
  147. Chen, W-S.; Chang, F-W.; Roselin, L.S.; Ou, T-C.; Lai, S-C.; 2010. Partial oxidation of methanol over copper catalysts supported on rice husk ash. J. Mol. Catal. A: Chem. 318: 36-43.
  148. Reuse, P.; Renken, A.; Haas-Santo, K.; Go¨rke, O.; Schubert, K.; 2004. Hydrogen production for fuel cell application in an autothermal micro-channel reactor. Chem. Eng. J. 101: 133-141.
  149. Navarro, R.M.; Pena, M.A.; Merino, C.; Fierro, J.L.G.; 2004. Production of hydrogen by partial oxidation of methanol over carbon-supported copper catalysts. Top. Catal. 30/31: 481-486.
  150. Wang, Z.; Xi, J.; Wang, W.; Lu, G.; 2003. Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts. J. Mol. Catal. A: Chem. 191: 123-134.
  151. Horny, C.; Renken, A.; Kiwi-Minsker, L.; 2007. Compact string reactor for autothermal hydrogen production. Catal. Today 120: 45-53.
  152. Bion, N.; Epron, F.; and Duprez, D. 2010. Bioethanol reforming for H2 production a comparison with hydrocarbon reforming. Catalysis 22: 1-55 .
  153. Ioannides, T.; and Neophytides, S.; 2000. Efficiency of a solid polymer fuel dell operating on ethanol. J. Power Sources 91: 150-156.
  154. Casanovas, A.; Roig, M.; de Leitenburg, C.; Trovarelli, A.; Llorca, J.; 2010. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. Hydrogen Energy 35: 7690-7698.
  155. Fatsikostas, A.; Kondarides, D.; and Verykios, X.; 2001. Steam Reforming of Biomass-Derived Ethanol for the production of Hydrogen for Fuel Applications. Chem. Commun. 9: 851-852.
  156. Salge, J.R.; Deluga, G.A.; Schmidt, L.D. 2005. Catalytic partial oxidation of ethanol over noble metal catalysts. J. Catal. 235:69-78.
  157. Chen H.; Yu, H.; Tang, Y.; Pan, M.; Yang, G.; Peng, F.; Wang, H.; Yang, J. 2009. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. J. Nat. Gas Chem. 18: 191-198.
  158. Al-Hamamre, Z.; Hararah M.A. 2010. Hydrogen production by thermal partial oxidation of ethanol: Thermodynamics and kinetics study. Int. J. Hydrogen Energy 35: 5367-5377.
  159. Dolgykh, L.Y.; Stolyarchuk, I. L.; Deynega, I.V.; and Strizhak, P.E.; 2005. Use of industrial dehydrogenation catalysts for the hydrogen production from bioethanol. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005: 13-15.
  160. Tanaka Y.; Takeguchi T.; Kikuchi R.; Eguchi K.; 2005. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A: Gen. 279: 59-66.
  161. Kusˇar, H.; Hocˇevar S.; Levec J.; 2006. Kinetics of the water-gas shift reaction over nanostructured copper-ceria catalysts. Appl. Catal. B: Environ. 63: 194-200.
  162. Trimm D.L. 2005. Minimisation of carbon monoxide in a hydrogen stream for fuel cellapplication. Appl. Catal. A:Gen. 296: 1-11.
  163. Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. 2003. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels. Appl. Catal. A: Gen. 242: 287-295 .
  164. Prasad, R.; Kennedy, L.A.; and Ruckenstein, E. 1984. Catalytic combustion. Catal. Rev. Sci. Eng. 26: 1-58.
  165. Arai, H.; and Machida, M.; 1991. Recent progress in high temperature catalytic combustion. Catal. Today 10: 81-95.
  166. Bosch, H.; and Janssen, F.; 1987. Formation and control of nitrogen oxides. Catal. Today 2 :369-379
  167. Eguchi, K.; and Arai, H.; 1996. Recent advances in high temperature catalytic combustion. Catal. Today 29: 379-386.
  168. Burch, R.; and Loader, P.K.; 1994. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations. Appl. Catal. B: Env. 5: 149-164.
  169. Sekizawa, K.; Eguchi, K.; Widjaja, H.; Machida, M.; and Arai, H. 1996. Property of Pd-supported catalysts for catalytic combustion. Catal. Today 28: 245-250.
  170. Comino, G.; Gervasini, A.; and Ragaini, V.; 1997. Methane combustion over copper chromite catalysts. Catal. Lett. 48: 39-46.
  171. Randy, B.; Kevin, C.; John, F.; Peter, A. F.; Lew, G.; Hunter, G.; Kent, H.; Mike, I. ; Mike, J.; David, K.; Rae, L.; David, L.; Marlene, L.; Lee, W.S.; Mark, S.; and Steve, W. 1996. Oxygenated gasoline. Motor Gasoline Technical Review 36: 45-53.7
  172. Chidambaram, V. Ph. D. Thesis. 2005. Evaluation of catalytic routes for the production of oxygenates from refinery feed stocks. Department of Chemistry, I.I.T. Madras, India.
  173. Frey, S.J.; Schmidt, R.J.; Marker, T.L.; and Marinangeli, R.E.1998. Integrated process for producing diisopropyl ether, an isopropyl tertiary alkyl ether and isopropyl alcohol. U S Patent. 5, 705, 712.
  174. Carlini, C.; Flego, C.; Marchionna, M.; Noviello, M.; Galletti, A.M.R.; Sbrana, G.; Basile, F.; Vaccari, A. 2004. Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous copper chromite/Mg-Al mixed oxides catalysts. J. Mol. Catal. A: Chem. 220: 215-220.
  175. Kiennemann, A.; Irdris, H.; Hindermann, J.P.; Lavalley, J.C.; Vallet, A.; Chaumette, P.; Courty, Ph. 1990. Methanol synthesis on Cu/ZnAl2O4 and Cu/ZnOAl2O3 Catalysts: Influence of carbon monoxide pretreatment on the formation and concentration of formate species. Appl. Catal. 59:165-184.
  176. Spencer M.S. 1987. Brass formation in copper-zinc catalysts. III. Surf Sci 192: 336-343
  177. Herwijnen, T.V.; De Jong, W.A. 1974. Brass formation in a copper/zinc oxide CO shift catalyst. J Catal 34: 209-214.
  178. Jung K.D.; Joo O.S.; Han S.H.; Uhm S.J.; and Chung I.J. 1995. Catal. Lett. 35: 303
  179. Jung K.D.; and Joo O.S. 2002. Catal. Lett. 84: 21-25
  180. Venugopal, A.; Palgunadi, J.; Jung, K.D.; Joo, O.S.; Shin, C.H. 2008. Cu-Zn-Cr2O3 catalysts for Dimethyl Ether Synthesis: Structure and Activity Relationship. Catal. Lett. 123:142-149.
  181. Fujimoto, K.; Asami, K.; Shikada, T.; Tominaga, H. 1984. Selective Synthesis of Dimethyl Ether from Synthesis Gas. Chem. Lett. 13 : 2051-2054.
  182. Hansen, J.G; Voss, B.; Joensen, F.; Siguroardottir, I.D. 1995. SAE Technical Paper Series 950063.
  183. Ohyama,S.; Kishida,H.; 1998 Physical mixture of CuO and Cr2O3 as an active catalyst component for low-temperature methanol synthesis via methyl formate. Appl. Catal. A: Gen. 172:241-247
  184. Nakamura, H.; Saeki, K.; Tanaka, M. 1988. Jpn. Patent 88/51129 .
  185. Tanaka, M.; Saeki, K. 1988. Jpn. Patent 88/51130
  186. Mahajan, D.; Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E. 1991. Homogeneous catalyst formulations for methanol production.U.S. Patent 4,992,480.
  187. R.S. Sapienza, W.A. Slegeir, T.E. O'Hare, D. Mahajan, U.S. Patent 4,623,634 (1986).
  188. M. Marchionna, M. Lami, F. Ancillotti, R. Ricci, Ital. Patent 20028/A (1988).
  189. Onsager, O.T. Jpn. Patent 87/500867 (1987); 91/12048 (1991).
  190. P.AÊ . Sùrum, O.T. Onsager, in: Proc. 8th Int. Congr. On Catalysis, 2, 1984, 233.
  191. Monti, D.M.; Kohler, M.A.; Wainwright, M.S.; Trimm, D.L.; Cant, N.W. 1986. Liquid phase hydrogenolysis of methyl formate in a semi batch reactor. Appl. Catal. 22: 123-136.
  192. Palekar, V.M.; Jung, H.; Tierney, J.W.; Wender, I. 1993. Slurry phase synthesis of methanol with a potassium methoxide/copper chromite catalytic system. Appl. Catal. A 102: 13-34.
  193. Palekar, V.M.; Tierney, J.W.; Wender, I. 1993. Alkali compounds and copper chromite as low-temperature slurry phase methanol catalysts. Appl. Catal. A 103: 105-122.
  194. Gormley, R.J.; Rao, V.U.S.; Soong, Y.; Micheli, E. 1992. Methyl formate hydrogenolysis for low-temperature methanol synthesis. Appl. Catal. A 87: 81-101.
  195. Trimm, D.L.; Wainwright, M.S. 1990. Steam reforming and methanol synthesis. Catal. Today 6: 261-278.
  196. Ohyama, S.; 2003. Low-temperature methanol synthesis in catalytic systems composed of copper-based oxides and alkali alkoxides in liquid media: effects of reaction variables on catalytic performance. Top Catal. 22: 3-4.
  197. Czernik, S.; Bridgwater, A.V.; 2004. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 18: 590-598.
  198. Pattiya, A.; Titiloye, J.O.; Bridgwater, A.V. 2010. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89: 244-253.
  199. Park, E. D.; Lee, D.; and Lee, H. C. 2009. Recent progress in selective CO removal in a H2-rich stream. Catal. Today 139: 280-290.
  200. Cheng, W-H. 1996. Selective co oxidation in presence of H2. over Cu/Cr/Ba catalysts. React. Kinet. Catal. Lett. 58(2): 329-334.
  201. Han, X.; Naeher, L.P. 2006. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 32: 106-120.
  202. Kašpar, J.; Fornasiero, P.; Hickey, N. 2003. Automotive catalytic converters: current status and some perspectives. Catal. Today 77: 419-449.
  203. Suresh, Y.; Sailaja Devi, M.M.; Manjari, V.; Das, U.N. 2000. Oxidant stress, antioxidants, and nitric oxide in traffic police of Hyderabad, India. Environ. Pollut. 109: 321-325.
  204. Peters, A.; Liu, E.; Verier, R.I. 2000. Air pollution and incidence of cardiac arrhythmia. Epidemiology 11: 11-17.
  205. Prasad, R.; and Bella, V.R. 2010. A Review on Diesel Soot Emission, its Effect and Control. Bull. Chem. React. Eng. Catal. 5(2): 69-86.
  206. Miguel, A.H.; Eiguren-Fernandeza, A.; Jaquesa, P.A.; Froinesa, J.R.; Granta, B.L.; Mayo, P.R. 2004. Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in Claremon, California. Atmos. Environ. 38: 3241-51.
  207. Gandhi, H.S.; Graham, G.W.; and McCabe, R.W. 2003. Automotive exhaust catalysis. J. Catal. 216: 433-442.
  208. Acres, G.J.K.; and Harrison, B. 2004. The development of catalysts for emission control from motor vehicles: early research at Johnson Matthey. Top Catal. 28: 1-4.
  209. Labhsetwar,N.; Biniwale, R.B.; Kumar,R.; Rayalu, R.; and Devotta, S. 2006. Application of supported perovskite-type catalysts for vehicular emission control. Catalysis Surveys from Asia 10 (1): 55-64.
  210. Centi, G.; Arena, G.E.; and Perathoner, S. 2003. Nanostructured catalysts for NOx storage-reduction and N2O decomposition. J. Catal. 2003 216(1-2): 443-454 .
  211. Ferrandon, M. 2001. Mixed metal oxide-Noble metal catalyst for total oxidation of volatile organic matter and carbon monoxide. Ph. D. Thesis. Dept. of Chemical Engineering and Technology. Royal Institute of Technology, Stolkholm.
  212. Stegenga, S.; Dekker, N.; Bijsterbosch, J.; Kapteijn, F.; Moulijn, J.; Belot, G.; Roche, R. 1991. Catalytic automotive pollution control without noble metals. In Catalysis and Automotive pollution Control II; Crucq, A., Ed.; Elsevier: Amsterdam. The Netherlands: 353-369.
  213. Chien, C-C.; Chuang, W-P.; Huang, T-J. 1995. Effect of heat-treatment conditions on Cu-Cr/γ,-alumina catalyst for carbon monoxide and propene oxidation. Appl. Catal. A: Gen. 131: 73-87.
  214. Kapteijn, F.; Stegenga, S.; Dekker, N.J.J.; Bijsterbosch, J.W.; Moulijn, J.A. 1993. Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification. Catal. Today 16: 273-287.
  215. Severino, F.; Brito,J.; Carías, O.; Laine, J. 1986. Comparative study of alumina-supported CuO and CuCr2O4 as catalysts for CO oxidation. J. Catal. 102: 172-179.
  216. Vass, M.I.; Georgescu, V. 1996. Complete oxidation of benzene on Cu-Cr and Co-Cr oxide catalysts. Catal. Today 29: 463-470.
  217. Dekker, F.H.M.; Dekker, M. C.; Bliek, A.; Kapteijn, F.; Moulijn, J. 1994. A. A transient kinetic study of carbon monoxide oxidation over copper-based catalysts for automotive pollution control. Catal. Today 20: 409.-422
  218. Rajesh, H.; Ozkan, U.S. 1993. Complete Oxidation of Ethanol, Acetaldehyde, and Ethanol/Methanol Mixtures over Copper Oxide and Copper-Chromium Oxide Catalysts. Ind. Eng. Chem. Res. 32: 1622.-1630
  219. Heyes, C. J.; Irwin, J. G.; Johnson, H. A.; Moss, R. L. 1982. The catalytic oxidation of organic air pollutants. Part 2. Cobalt molybdate and copper chromite catalysts. J. Chem. Technol. Biotechnol. 32: 1034-1041.
  220. Subbanna, P.; Greene, H.; Desal, F. 1988. Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol 22: 557.-561
  221. Annual report by Committee on Medical and Biological Effects of Environmental Pollutants. 1977. Carbon Monoxide. Washington, D.C.: National Academy of Sciences (U.S.). ISBN 0-309-02631-8 .
  222. Wolf, P.C. 1971. Carbon Monoxide measurement and Monitoring in Urbon air. Env. Sci. Tech. 5(3): 212-218.
  223. Severino, F.; and Laine, J. 1983. Effect of Composition and Pre-treatments on the Activity of Copper-Chromite-based Catalysts for Oxidation of Carbon Monoxide. Ind. Eng. Chem. Prod. Res. Dev. 22: 396-401.
  224. Laine, J.; Brito, J.; and Severino, F. 1990. Surface Copper Enrichment by Reduction of Copper-Chromite Catalyst for Carbon Monoxide Oxidation. Catal. Letters 5: 45-54.
  225. Pantaleo, G.; Liotta, L.F.; Venezia, A.M.; Deganello, G.; Ezzo, E.M.; Kherbawi, M.A. El; Atia, H. 2009. Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2. Mater Chem Phys 114: 604-611.
  226. Xavier, K.O.;Rashid, K.K.A.; Sen,B.; Yusuff, K.K.M.; and Chacko, J. 1998. Support effects on Cu-Cr/Al2O3 catalysts for CO oxidation. Stud. Surf. Sci. Catal. 113: 821-828.
  227. Hertl, W.; Farrauto, R.J. 1973. Mechanism of carbon monoxide and hydrocarbon oxidation on copper chromite. J. Catal. 29: 352-360.
  228. Park, P. W.; and Ledford, J.S. 1998. Characterization and CO oxidation activity of Cu/Cr/Al2O3 catalysts. Ind. Eng. Chem. Res. 37: 887-893.
  229. Li, W.; Cheng, H.; 2008. Bi2O3/CuCr2O4-CuO core/shell structured nanocomposites: Facile synthesis and catalysis characterization. J. Alloy Compound 448: 287-292.
  230. Wedding, B.; Farrauto, R.J. 1974. Rapid Evaluation of Automotive Exhaust Oxidation Catalysts with a Differential Scanning Calorimeter. Ind. Eng. Chem. Process Des. Dev. 13 (1): 45-47.
  231. Morgan, W. L.; Farrauto, R.J. 1973. Active sites on a copper chromite catalyst. J. Catal., 31(1): 140-142.
  232. Severino, F.; Brito, J.L.; Laine, J.; Fierro, J.L.G.; López Agudo, A. 1988. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. J. Catal., 177(1): 82-95.
  233. Prasad, R.; Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal., 4(1): 5-9.
  234. Farrauto, R.J.; Wedding, B. 1973. Poisoning by SOx of some base metal oxide auto exhaust catalysts. J. Catal. 33: 249-255.
  235. Stegenga, S.; van Soest, R.; Kapteijn, F.; Moulijn, J.A. 1993. Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts. Appl. Catal. B 2: 257-275.
  236. Shelef, M.; Otto, K.; and Otto, N.C. 1978. Poisoning of automotive catalysts. Adv. Catal. 27: 311-65.
  237. Bartholomew, C.H. 2001. Mechanisms of catalyst deactivation. Appl Catal A: Gen. 212: 17-60.
  238. Kummer, J.T. 1980. Catalysts for automobile emission control. Prog. Energy. Combust. Sci. 66: 177-199.
  239. Kim, Y-W.; Rhee, H-K.; Kim, Y-Y.; Choi, I-S. 1987. Deactivation of supported copper chromite catalyst by sulfur dioxide or water vapour. Hwahak Konghak 25(5): 454-459.
  240. Lauder, A. 1975. Metal Oxide Catalytic Compositions. U.S. Patent 3897367.
  241. Royer, S.; Duprez¸ D. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. Chem. Cat. Chem. 3: 24-65.
  242. Hayakawa, K.; Tang, N.; Kameda, T.; and Toriba, A. 2007. Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia. Asian J. Atmos. Environ. 1(1): 19-27.
  243. Hayakawa, K.; Murahashi, T.; Akutsu, K.; Kanda, T.; Tang, N.; Kakimoto, H.; Toriba, A.; and Kizu, R. 2000. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates. Polycycl. Aromat. Comp. 20 : 179-190.
  244. Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Miguel, A.H.; Hering, S.V.; and Hammond, S.K. 1999. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ. Sci. Technol. 33: 3091-3099.
  245. Oda, J.; Nomura, S.; Yasuhara, A.; and Shibamoto, T. 2001. Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel. Atmos. Environ. 35 : 4819-4827.
  246. Zhou, J.; Xia, Q.-H.; Shen, S.-C.; Kawi, S.; and Hidajat, K. 2004. Catalytic oxidation of pyridine on the supported copper catalysts in the presence of excess oxygen. J. Catal. 225: 128-137.
  247. Blaha, D.; Bartlett, K.; Czepiel, P.; Harriss, R.; Crill,Atmos, 1999. Natural and anthropogenic methane sources in New England. Environ. 33 (2): 243-255.
  248. Su, S.; Beath, A.; Guo, H.; Mallet, C. 2005. An assessment of mine methane mitigation and utilization technologies. Prog. Energy Combust. Sci. 3: 123-170.
  249. Kunimi, H.; Ishizawa, S.; Yoshikawa, Y. 1997. Three-dimensional air quality simulation study on low-emission vehicles in southern California. Atmos. Environ. 31 (2): 145-58.
  250. Beer, T.; Grant, T.; Williams, D.; Watson, H. 2002. Fuel-cycle green housegas emissions from alternative fuels in Australian heavy vehicles. Atmos. Environ. 36 (4): 753-763.
  251. Goyal, P.; Sidhartha. 2003. Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos. Environ. 37 (38): 5423–5431.
  252. Gambino, M.; Iannaccone, S.; Pidria, M.F.; Miletto, G.; Rollero, M.; 2004. in: World Automotive Congress F2 64-279.
  253. Metz, B. 2001. Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2001.
  254. Sidwell, R.W.; Zhu, H.; Kee, R.J.; Wickham, D.T. 2003. Catalytic combustion of premixed methane-in-air on a high-temperature hexaaluminate stagnation surface Combust. Flame 134 (1-2): 55-66.
  255. Hui, K.S.; Chao, C.Y.H.; Kwong, C.W.; Wan, M.P. 2008. Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement. Combust. Flame 153: 119-129.
  256. Ismagilov, I.Z.; Ekatpure, R.P.; Tsykoza, L.T.; Matus, E.V.; Rebrov, E.V.; de Croon, M.H.J.M.; Kerzhentsev, M.A. ; Schouten, J.C. 2005. Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining. Catal. Today 105: 516-528.
  257. Harrison, P.G.; Lloyd, N.C.; and Azelee, W. 1995. Non-noble metal environmental catalysts: Synthesis, characterization and catalytic activity. Stud. Surf. Sci. Catal. 96: 487-496.
  258. Price, D.; Birnbaum, R.; Batiuk, R.; McCullough, M.; Smith, R. 1997. Nitrogen Oxides: Impacts on Public Health and the Environment; EPA-452/R-97-002 (NTIS PB98-104631); U.S. Environmental Protection Agency, Office of Air and Radiation: Washington, DC.
  259. Russo, N.; Fino, D.; Saracco, G.; Specchia, V. 2007. N2O catalytic decomposition over various spinel-type oxides. Catal. Today 119:228-232.
  260. Amin, N.A.S.; Tan, E.F.; and Manan, Z.A. 2004. SCR of NOx by C3H6: comparison between Cu/Cr/CeO2 andCu/Ag/ CeO2 catalysts. J. Catal. 222: 100-106.
  261. Kramlich, J.C.; Linak, W.P.; 1994. Prog. Nitrous oxide behaviour in the atmosphere, and in combustion and industrial systems. Energy Combust. Sci. 20: 149-202.
  262. Wojtowicz, M.A.; Pels, J.R.; Moulijn, J.A.; 1993. Combustion of coal as a source of N2O emission. Fuel Proc. Technol. 34: 1-71.
  263. Sloss, L.L.; Hjalmarsson, A.-K.; Soud, H.N.; Campbell, L.M.; Stone, D.K.; Shareef, G.S.; Emmel, T.; Maibodi, M.; Livengood, C.D.; Markussen, J. 1992. Nitrogen oxides control Technology fact book, Noyes Data Corporation, Park Ridge, NJ, USA: 8-14.
  264. Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J.R. 2004. Bi2O3 as a selective sensing material for NO detection. Sens. Actuators B 99: 74-99.
  265. Parvulescu, V.I.; Grange, P.; Delmon, B. 1998. Catalytic removal of NO. Catal. Today 46: 233-316.
  266. Manney, G.L.; Froidevaux, L.; Waters, J.W. ; Zurek, R.W. ; Read, W.G.; Elson, L.S.; Kumer, J.B.; Mergenthaler, J.L.; Roche, A.E.; O'Nelll, A.; Harwood, R.S.; MacKenzie, I.; Swinbank, R.; Nature 370: 429; J. Kramlik, W.P. Linak, Prog. Energy Combust. Sci. 20: 149.
  267. Armor, J.N. 1992. Environmental Catalysis. Appl. Catal. B: Environ. 1: 221-256.
  268. White Paper: 1989. Selective Catalytic Reduction Controls to Abate NOx Emissions. Industrial Gas Cleaning Institute, Inc., Washington, D.C.
  269. Shelef, M.; Gandhi, V. 1974. Ammonia formation in the catalytic reduction of nitric oxide. Ind. Eng. Chem.
  270. Prod. Res. Dev. 13: 80-85.
  271. Tarasov, A.L.; Osmanov, M.O.; Shvets, V.A.; Kazanskii, V.B. 1990. IR spectroscopic study of absorbed NO and CO, state of Cu-Cr/Al2O3 catalyst surface, and mechanism of reduction of NO by carbon monoxide. Kinet. Catal. 31: 565-571.
  272. Lee, C.-Y.; Jung, T.-H.; Ha, B.-H. 1996. Characteristics of CuO-CrO,/mordenite and its catalytic activity for combustion and NO decomposition. Appl. Catal. B 9: 77-91.
  273. Xu, X-L.; Chen, Z-K.; Chen, Z-N.; Li, J-Q.; Li, Y. 2008. Theoretical and Computational Developments Interaction of CO and NO with the spinel CuCr2O4 (100) surface: A DFT study. Int J Quantum Chem 108(9): 1435-1443.
  274. Jie-Chung, L.; Hung-Wen, Y.; Chien-Hung, L. 2009. Preparing Copper/Manganese Catalyst by Sol–Gel Process for Catalytic Incineration of VOCs. Aerosol Air Quality Res. 9: 435-440.
  275. Salvatore, S.; Simona, M.; Carmelo, C.; Cristina, S.; Alessandro, P. 2003. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B: Env. 40: 43-49.
  276. Chai, K.S.; Geun, S.W. 2009. Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds. Appl. Catal. B: Env. 92: 429-436.
  277. Bum, K.S.; Tae, H.H.; Chang, H.S. 2002. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere 48: 437-444.
  278. Hazard Evaluation System and Information Service, Dept. of Health Services. HESIS/toluene.htm, 2007.
  279. Gervasini, A.; Vezzoli, G.C.; Ragaini, V. 1996. VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today 29: 449-455.
  280. Aguado, S.; Coronas, J.; Santamaria, J. 2005. Use of zeolite membrane reactors for the combustion of VOCs present in air at low concentrations. Chem. Eng. Res. Design, 83(A3): 295-301.
  281. Hinh, V.V.; Jamal, B.; Aissa, O-D.; Bechara, T. 2009. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst. J. Hazard Mater. 169: 758-765.
  282. Zavyalova, U.; Nigrovski, B.; Pollok, K.; Langenhorst, F.; Mu¨ller, B.; Scholz, P.; Ondruschka, B.; 2008. Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination. Appl. Catal. B: Environ. 83: 221-228.
  283. Cherkezova-Zheleva, Z.; Kolev, H.; Krsti, J.; Dimitrov, D.; Ivanov, K.; Loncarevi, D.; Jovanovi, D.; and Mitov, I.; 2009. Characterization of Double Oxide System Cu-Cr-O Supported on γ-Al2O3. Russian J. Phys. Chem. A 83(9): 1436-1441.
  284. Sasidharan, N.S.; Deshingkar, D.S.; and Wattal, P.K. 2005. Report, BARC/2005/E/018 (2005).
  285. Zelenka, P.; Cartellieri, W.; and Herzog, P. 1996. Worldwide diesel emission standards, current experiences and future needs. Appl. Catal. B 10: 3-28
  286. Teraoka, Y.; and Kagawa, S. 1998. Simultaneous catalytic removal of NOx and diesel soot particulates. Catal. Surv. Jpn. 2: 155-164.
  287. Shangguan, W.F.; Teraoka, Y.; Kagawa, S. 1996. Simultaneous catalytic removal of NO and diesel soot particulates over ternary ABO, spinel-type oxides. Appl. Catal. B: Env. 8: 217-227.
  288. Amin, N.A.S.; Tan, E.F.; Manan, Z.A. 2003. Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts. Appl. Catal. B: Env. 43: 57-69.
  289. Orlik. S. N. 2001. Contemporary problems in the selective catalytic reduction of nitrogen oxides (NOx). Theoret. Exper. Chem. 37(3): 135-162.
  290. Gonzalez, M. A.; Liney, E.; Piel, W.; Natarajan, M.; Asmas, T.; Naegeli, D. W.; Yost, D.; Frame, E. A.; Clark, W.; Wallace, J. P.; Garback, J. 2001. SAE Paper. No. 01-01-3632.
  291. Tailleur, R.G.; and Caris, P.C. 2009. Selective Oxidation of a hydrotreated light catalytic gas oil To produce low-emission diesel fuel. Energy Fuels 23: 799-804.
  292. Votsmeier, M.; Kreuzer, T.; Lepperhoff, G. 2005. Automobile Exhaust Control. Automobile Exhaust Control. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  293. Solov‟ev, S. A.; Kurilets, Ya. P.; Orlik, S. N.; Pavlikov, V. N.; and Garmash, E. P. 2003. Oxidation of finely dispersed carbon on coated oxide catalysts. Theoret. Exper. Chem. 39(5): 330-335.
  294. Atimtay, A.T. 2001. Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Prod. Proc. 2: 197-208.
  295. Li, H.; 2008. Selective catalytic oxidation of hydrogen sulfide from syngas. M.S. Thesis. University of Pittsburgh.
  296. Atimtay, A.T.; Gasper-Galvin L.D.; and Poston J.A.; 1993. Novel supported sorbent for hot gas desulphurization. Environ. Sci. Technol. 27(7): 1295-1303.
  297. Gasper-Galvin, L.D.; Atimtay, A.T.; Gupta, R.P. 1998. Zeolite-Supported Metal Oxide Sorbents for Hot-Gas Desulfurization. Ind. Eng. Chem. Res. 37: 4157-4166.
  298. Flytzani-Stephanopoulos, M.; Sakbodin, M.; Wang, Z;. 2006 Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Sci. 312: 1508-1510.
  299. Ham, V. D.; Heesink, A.G.J.; Prins, A.B.M.; Swaaij, W.V.; W.P.M., 1996. Proposal for a regenerative high temperature process for coal gas cleanup with calcined limestone. Ind. Eng. Chem. Res. 35(5): 1487-1495.
  300. Cheah, S.; Carpenter, D.L.; and Magrini-Bair, K.A. 2009. Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass and Coal-derived Syngas. Energy Fuels 23: 5291-5307.
  301. Abbasian, J.; and Slimane, R.B. 1998. A regenerable copper-based sorbent for H2S removal from coal gases. Ind. Eng. Chem. Res. 37: 2775-2782.
  302. Jadhav, R.A. 2006. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas. Official Monitor of Republic Moldova, 2002, No. 59-61: 19-26.
  303. Ding, Z-Y.; Aki, S.N.V.K.; Abraham, M.A. 1995. Catalytic Supercritical Water Oxidation: Phenol Conversion and Product Selectivity. Environ. Sci. Technol.29 (11): 2748-2753.
  304. Santos, A.; Yustos, P.; Quintanilla, A.; Garcia-Ochoa, F.; 2005. Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chem. Eng. Sci. 60: 4866 - 4878.
  305. Akyurtlu, J.F.; Akyurtlu, A.; Kovenklioglu, S. 1998. Catalytic oxidation of phenol in aqueous solutions. Catal. Today 40: 343-352.
  306. Wöllner, A.; Lange, F.; Schmelz, H.; Knözinger, H. 1993. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl. Catal. A: Gen. 94: 181-203.
  307. Gang, L. 2002. Catalytic Oxidation of Ammonia to Nitrogen. Ph.D Thesis. Schuit Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, The Netherlands.
  308. Huang, T.L.; Macinnes, J.M.; and Cliffe, K.R. 2001. Nitrogen Removal from Wastewater by a Catalytic Oxidation Method. Water Res. 35(9): 2113-2120.
  309. Hung, C-M. 2007. Wet air oxidation of aqueous ammonia solution. catalyzed by bimetallic pt/rh nanoparticle Catalysts. J. Chinese Institute of Eng. 30(6): 977-981.
  310. Martin, A.; Luck, F.; Armbruster, U.; Patria, L.; Radnik, J.; Schneider, M. 2005. Ammonia removal from effluent streams of wet oxidation under high pressure. Top Catal. 33(1-4): 155-169.
  311. Samuel, D. F.; & Osman, M.A. 1998. Chemistry of water treatment: 127-196. USA: CRC.
  312. Chen, S.; & Cao, G. 2006. Study on the photocatalytic oxidation of NO2- ions using TiO2 beads as a photocatalyst. Desalination 194(1-3): 127-134.
  313. Canter, L.W. 1997. Nitrates in Groundwater. CRC Press, Boca Raton, FL.
  314. Ketir, W.; Bouguelia, A.; Trari, M. 2009. Visible Light Induced NO2- Removal over CuCrO2 Catalyst. Water Air Soil Pollut. 199: 115-122.
  315. Kawamoto, A.M.; Pardini, L.C.; Rezende, L.C.; 2004. Synthesis of copper chromite catalyst. Aerospace Sci. Technol. 8(7): 591- 598.
  316. Rajeev, R.; Devi, K. A.; Abraham, A. et al. 1995. Thermal decomposition studies (Part 19): Kinetics and mechanism of thermal decomposition of copper ammonium chromate precursor to copper chromite catalyst and correlation of surface parameters of the catalyst with propellant burning rate. Thermochim. Acta 254(15): 235-247.
  317. Patron, L.; Pocol, V.; Carp, O.; 2001. New synthetic route in obtaining copper chromite(I): Hydrolysis of some soluble salts. Mater. Res. Bull. 36(7/8): 1269-1276
  318. Armstrong, R.W.; Baschung, B.; Booth, D.W.; 2003. Enhanced propellant combustion with nanoparticles. Nano Lett. 3: 253-255.
  319. Tagliaferro, F.S.; Fernandes, E.A.N.; Bacchi, M.A.; Campos, E.A.; Dutra, R.C.L.; Diniz, M.F. 2006. INAA for the validation of chromium and copper determination in copper chromite by infrared spectrometry. J. Radioanal. Nucl. Chem. 269: 403-406.

Last update: 2021-01-25 15:43:36

No citation recorded.

Last update: 2021-01-25 21:05:49

  1. Selective hydrogenation of acetone in the presence of benzene

    Shutkina O.. Catalysis Today, 127 , 2013. doi: 10.1016/j.cattod.2013.05.017
  2. Jahn-Teller distorted Cu1-xNixCr2O4(x = 0, 0.5, 1) nanoparticles

    Rubengo F.. Surface Science Spectra, 27 (2), 2020. doi: 10.1116/6.0000444
  3. A novel route of single step reactive calcination of copper salts far below their decomposition temperatures for synthesis of highly active catalysts

    Prasad R.. Catalysis Science and Technology, 3 (12), 2013. doi: 10.1039/c3cy00626c
  4. Characterization of CuCr2O4 composite obtained by solution combustion synthesis

    Martins F.d.A.B.L.. Revista Materia, 24 (3), 2019. doi: 10.1590/s1517-707620190003.0741
  5. CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings

    Ma P.. Journal of Materials Engineering and Performance, 25 (7), 2016. doi: 10.1007/s11665-016-2143-z
  6. Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation

    Pascher T.. ChemistryOpen, 8 (12), 2019. doi: 10.1002/open.201900282
  7. Synthesis, characterization and photocatalytic activity of cubic-likeCuCr2O4for dye degradation under visible light irradiation

    Yuan W.. Applied Surface Science, 127 (1), 2014. doi: 10.1016/j.apsusc.2014.07.158
  8. Effect of Precipitant on Performance of CuCr2O4 Black Pigment

    Bai M.. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 46 (7), 2018. doi: 10.14062/j.issn.0454-5648.2018.07.05
  9. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    Beshkar F.. PLoS ONE, 12 (6), 2017. doi: 10.1371/journal.pone.0158549
  10. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Tripathi T.. APL Materials, 4 (4), 2016. doi: 10.1063/1.4946884
  11. Multicomponent Spinel Oxide Solid Solutions: A Possible Alternative to Platinum Group Metal Three-Way Catalysts

    Hirakawa T.. ACS Catalysis, 9 (12), 2019. doi: 10.1021/acscatal.9b03772
  12. Effective production of sorbitol and mannitol from sugars catalyzed by Ni nanoparticles supported on aluminium hydroxide

    Rodiansono R.. Bulletin of Chemical Reaction Engineering and Catalysis, 8 (1), 2013. doi: 10.9767/bcrec.8.1.4290.40-46
  13. Copper Chromite as Ballistic Modifier in a Typical Solid Rocket Propellant Composition: A Novel Synthetic Route Involved

    Viswanath J.. Journal of Energetic Materials, 36 (1), 2018. doi: 10.1080/07370652.2017.1313911
  14. CuO@NiO core-shell nanoparticles decorated anatase TiO2 nanospheres for enhanced photocatalytic hydrogen production

    Ravi P.. International Journal of Hydrogen Energy, 45 (13), 2020. doi: 10.1016/j.ijhydene.2019.05.020
  15. A review on CO oxidation over copper chromite catalyst

    Prasad R.. Catalysis Reviews - Science and Engineering, 54 (2), 2012. doi: 10.1080/01614940.2012.648494
  16. Water: Friend or foe in catalytic hydrogenation? A case study using copper catalysts

    Govender A.. Catalysts, 8 (10), 2018. doi: 10.3390/catal8100474
  17. Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor

    Appalakutti S.. Chemical Engineering and Processing - Process Intensification, 89 , 2015. doi: 10.1016/j.cep.2014.12.012
  18. Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn-Teller distorted NiCr2O4 powders

    Ptak M.. Journal of Solid State Chemistry, 127 , 2013. doi: 10.1016/j.jssc.2013.03.023
  19. The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural

    Islam M.J.. Applied Catalysis B: Environmental, 127 , 2020. doi: 10.1016/j.apcatb.2020.119062
  20. Conversion of glycerol to lactic acid over Cu–Zn–Al and Cu–Cr catalysts in alkaline solution

    Li K.. Journal of the Taiwan Institute of Chemical Engineers, 79 , 2017. doi: 10.1016/j.jtice.2017.03.029
  21. Investigation on the Thermal Behavior of Ammonium Dinitramide with Different Copper-Based Catalysts

    Li Y.. Propellants, Explosives, Pyrotechnics, 45 (10), 2020. doi: 10.1002/prep.202000065
  22. Preparation and characterization of the CuCr2O4 nanostructures via a new simple route

    Beshkar F.. Journal of Materials Science: Materials in Electronics, 26 (7), 2015. doi: 10.1007/s10854-015-3024-1
  23. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts

    Ambursa M.M.. Renewable and Sustainable Energy Reviews, 127 , 2021. doi: 10.1016/j.rser.2020.110667
  24. Synthesis and characterization of Mn-doped copper chromite black pigments

    Ye M.. Advanced Materials Research, 127 , 2013. doi: 10.4028/
  25. Characterization of CuCr2O4-based materials prepared by solution combustion synthesis for use as pigments

    Coelho M.B.M.. Ceramica, 64 (127), 2018. doi: 10.1590/0366-69132018643692183
  26. Hydrogen production by ethanol decomposition and partial oxidation over copper/copper-chromite based catalysts prepared by combustion synthesis

    Carotenuto G.. Catalysis Today, 127 , 2013. doi: 10.1016/j.cattod.2012.05.022
  27. Catalysts

    Avci A.. Comprehensive Energy Systems, 2 , 2018. doi: 10.1016/B978-0-12-809597-3.00235-2
  28. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects

    Aljammal N.. Coordination Chemistry Reviews, 127 , 2019. doi: 10.1016/j.ccr.2019.213064
  29. Selective benzylic oxidation of alkylaromatics over Cu/SBA-15 catalysts under solvent-free conditions

    Neeli C.K.P.. Catalysis Communications, 39 , 2013. doi: 10.1016/j.catcom.2013.04.023
  30. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour

    Busca G.. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour, 2014. doi: 10.1016/C2012-0-00113-5
  31. Catalysts for Fatty Alcohol Production from Renewable Resources

    Thakur D.S.. JAOCS, Journal of the American Oil Chemists' Society, 93 (12), 2016. doi: 10.1007/s11746-016-2902-x
  32. The influence of technological parameters on hydrogenolysis of Glycerol in the presence of CuCr2O4 catalyst

    Wolosiak-Hnat A.. Journal of Advanced Oxidation Technologies, 15 (2), 2012. doi: 10.1515/jaots-2012-0221
  33. TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst

    Paulose S.. Journal of Thermal Analysis and Calorimetry, 124 (2), 2016. doi: 10.1007/s10973-015-5207-7
  34. Synthesis of Cu–Cr diketo, sublimable, eutectic composite complex, rod crystals from LDH as suitable MOCVD precursor of CuCr2O4 catalysts upon ceramic preforms for N2O decomposition

    Saikia P.. Materials Today Chemistry, 7 , 2018. doi: 10.1016/j.mtchem.2017.12.001
  35. Ni-based chromite spinel for high-performance supercapacitors

    Xu X.. RSC Advances, 6 (35), 2016. doi: 10.1039/C5RA27931C
  36. Inverse co-precipitation synthesis of copper chromite nanoparticles

    Tavakoli H.. Iranian Journal of Chemistry and Chemical Engineering, 35 (1), 2016.