Applications and Preparation Methods of Copper Chromite Catalysts: A Review

*Ram Prasad  -  Department of Chemical Engineering and Technology, Institute of Technology,, India
Pratichi Singh  -  Department of Chemical Engineering and Technology, Institute of Technology,, India
Received: 19 Mar 2011; Published: 22 Nov 2011.
Open Access
Citation Format:
Abstract

In this review article various applications and preparation methods of copper chromite catalysts have been discussed. While discussing it is concluded that copper chromite is a versatile catalyst which not only catalyses numerous processes of commercial importance and national program related to defence and space research but also finds applications in the most concerned problem worldwide i.e. environmental pollution control. Several other very useful applications of copper chromite catalysts are in production of clean energy, drugs and agro chemicals, etc. Various preparation methods about 15 have been discussed which depicts clear idea about the dependence of catalytic activity and selectivity on way of preparation of catalyst. In view of the globally increasing interest towards copper chromite catalysis, reexamination on the important applications of such catalysts and their useful preparation methods is thus the need of the time. This review paper encloses 369 references including a well-conceivable tabulation of the newer state of the art. Copyright © 2011 by BCREC UNDIP. All rights reserved.

(Received: 19th March 2011, Revised: 03rd May 2011, Accepted: 23rd May 2011)

[How to Cite: R. Prasad, and P. Singh. (2011). Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2): 63-113. doi:10.9767/bcrec.6.2.829.63-113]

[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.829.63-113 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/829 ]

| View in 

Keywords: Copper chromite; Applications; Preparation methods; Review
Funding: Department of Science and Technology, India

Article Metrics:

  1. Rao, R.; Dandekar, A.; Baker, R.T.K.; and Vannice, M.A.; 1997. Properties of Copper Chromite Catalysts in Hydrogenation Reactions. J. Catal. 171: 406-419
  2. Prasad, R. 2005. Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate. Mater. Lett. 59: 3945-3949
  3. Ma, Z.; Xiao, Z.; Bokhoven, J.A.V.; and Liang, C. 2010. A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion. J. Mater. Chem. 20:755-760
  4. George, K.; Sugunan, S.; 2008. Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catal. Commun. 9: 2149-2153
  5. Barman, S.; Acharya, N.C.P.A.; and Pramanik, P. 2006. Kinetics of Reductive Isopropylation of Benzene with Acetone over Nano-Copper Chromite-Loaded H-Mordenite. Ind. Eng. Chem. Res. 45: 3481-3487
  6. Wang, H.; Chen, L.; Luan, D.; Li, Y.; Yan, Z.; Zhang, Y.; and Xing,J. 2006. A continuous process for the synthesis of homopiperazine catalyzed by cu-based catalysts, React. Kinet. Catal. Lett. 89: 201-208
  7. Green, R.V.; and Moses, D.V. 1952. Destructive catalytic oxidation of aqueous waste materials. Sewage and Indust. Wastes 24: 288-299
  8. Vlasenko, V.M; and Chernobrivets, V.L. 2002. Catalytic purification of gases to remove vinyl chloride. Russian J. Appl. Chem.75: 1262-31264
  9. Laine, J.; Severino, F. 1990. Changes in alumina-supported copper and copper-chromite catalysts by the introduction of water during carbon monoxide oxidation. Appl. Catal. 65 (2): 253-258
  10. Wei, L.; Hua, C. 2007. Synthesis and characterization of Cu-Cr-O nanocomposites. J. Cent. South Univ. Technol.: 03-0291-05
  11. Saadi, S.; Bouguelia, A.; Trari, M.; 2006. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co.). Renew. Energ. 31: 2245-2256
  12. Yan J.; Zhang, L.; Yang, H.; Tang Y.; Lu Z.; Guo S.; Dai Y.; Han Y.; Yao, M.; 2009. CuCr2O4/TiO2 Heterojunction for photocatalytic H2 evolution under simulate sunlight irradiation. Sol. Energy 83: 1534-1539
  13. Boumaza, S.; Bouarab, R.; Trari, M.; Bouguelia, A. 2009. Hydrogen photo-evolution Over the spinel CuCr2O4. Energ. Convers. Manage. 50: 62-68
  14. Valde´s-Soli´s, T.; Marba´n, G.; Fuertes, A.B. 2006. Nanosized catalysts for the production of hydrogen by methanol steam reforming. Catal. Today 116: 354-360
  15. Boumaza S.; Auroux, A.; Bennici, S.; Boudjemaa, A.; Trari, M.; Bouguelia,A.; Bouarab, R. 2010. Water gas shift reaction over the CuB2O4 spinel catalysts. Reac Kinet Mech Cat 100:145-151
  16. Ginosar, D. M.; Rollins, H. W.; Petkovic, L. M.; Burch, K. C.; Rush, M. J.; 2009. High-temperature sulfuric acid decomposition over complex metal oxide catalysts. Int. J. Hydrogen Energ. 34: 4065 - 4073
  17. Maniecki, T.P.; Mierczynski, P.; Maniukiewicz, W.; Bawolak, K.; Gebauer, D.; Jozwiak, W.; 2009. Bimetallic Au-Cu, Ag-Cu/CrAl3O6 Catalysts for Methanol Synthesis. Catal. Lett. 130: 481-488
  18. Pattiya, A.; Titiloye, J.O.; Bridgwater, A.V. 2008. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. Appl. Pyrolysis 81: 72-79
  19. Latha B.M.; Sadasivam, V.; Sivasankar, B.; 2007. A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts. Catal. Commun. 8: 1070-1073
  20. Hubaut, R.; Study of the Competitive Reactions between α-β-Unsaturated Aldehyde and Allylic Alcohol on a Copper Chromite Catalyst. 1992a. React. Kinet. Catalo Left. 46: 25-32
  21. Li Z.; and Flytzani-Stephanopoulos, M.; 1997. Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization. Ind. Eng. Chem. Res. 36:187-196
  22. Chang, Y.; Tsen, H.; Chen, M.; and Lee, M.; 2001. A Study on The MOCVD Mechanism of Inverse Spinel Copper Ferrite Thin Films. Mat. Res. Soc. Spring Meeting, symposium U1.9
  23. Xiong, W.; Kale, G.M. 2006. High-selectivity mixed-potential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple. Sensors Actuator B 119: 409-414
  24. Li, D.; Fang, X.; Dong, W.; Deng, Z.; Tao, R.; Zhou, S.; Wang, J.; Wang, T.; Zhao, Y.; and Zhu, X.; 2009. Magnetic and electrical properties of p-type Mn-doped CuCrO2 Semiconductors. J. Phys. D: Appl. Phys. 42: 055009 (6pp)
  25. Cui, H.; Zayat, M. and Levy, D. 2005. Sol-Gel synthesis of nanoscaled spinels using sropylene oxide as a gelation agent. J. Sol-Gel Sci. Technol. 35: 175-181
  26. Plyasova, L. M.; Molina, I. Yu.; Kriger, T. A.; Davydova, L. P.; Malakhov, V. V.; Dovlitova, L. S.; and Yur‟eva, T. M. 2001. V. Interaction of hydrogen with copper-containing oxide catalysts: v. structural transformations in copper chromite during reduction-reoxidation. Kinet. Catal. 42: 126-131
  27. Rioux, R.M.; and. Vannice, M.A. 2003. Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts. J. Catal. 216: 362-376
  28. Kim, N. D.; Oh, S.; Joo, J. B.; Jung, K. S.; and Yi J. 2010. Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis. Korean J. Chem. Eng. 27: 431-434
  29. Sansare, S.D. 1983. Studies on the poisoning of copper chromite catalyst by thiophene. Univ of Bombay, India
  30. Mohan, D. 2003. Automotive exhaust pollution control studies on carbon monoxide oxidation over base metal catalysts. Ph.D. Thesis, Banaras Hindu University, India
  31. Natesakhawat, M. 2005. Investigation of active sites and reaction networks in catalytic hydrogen production: steam reforming of lower alkanes and the water-gas shift reaction. Degree Doctor of Philosophy in the Graduate School of the Ohio State University
  32. Chiu, C-W. 2006. Catalytic conversion of glycerol to propylene glycol: synthesis and technology assessment, Ph.D. Thesis, Faculty of the Graduate School University of Missouri- Columbia
  33. Dasari, M.A.; 2006. Catalytic conversion of glycerol and sugar alcohols to value-added products. Ph.D. Thesis, Faculty of the Graduate School University of Missouri-Columbia
  34. Frainier, L.J.; Herman, H. US Patent 1981.Fineberg; Copper chromite catalyst for preparation of furfuryl alcohol from furfural. Patent No.: 4,251,396
  35. Strom, R.M.; US Patent 1982. Copper chromite catalyst for oxidative coupling phenols. Patent No.: 4,354,048,1982
  36. Chaudhari, R.V.; Jaganathan, R.; Chaudhari, S.T.; Rode, C.V. US Patent 2006. Process for the preparation of copper chromite catalyst. Patent No. 7,037,877B1
  37. Barnicki, S.D.; Gustafson, B.L.; Liu, Z.; Perri, S.T.; Worsham, P.R. US Patent 2008. Ruthenium-Copper chromite hydrogenation catalyst. Patent No.: US 2008/0194398A1
  38. Barnicki, S.D.; Gustafson, B.L.; Liu, Z.; Perri, S.T.; Worsham, P.R. US Patent 2008. Palladium-Copper chromite hydrogenation catalyst. Patent No.: US 2008/0194398A1
  39. Pramottana, M.; Praserthdam, P.; and Ngamsom, B. 2002. Copper chromite catalyst for the selective hydrogenation of furfural to furfuryl alcohol. J. Chin. Inst. Chem. Engrs. 33: 477-481
  40. Huang, X.; Cant, N.W.; Wainwright, M.S.; Ma, L. 2005. The dehydrogenation of methanol to methyl formate Part I: Kinetic studies using copper-based catalysts. Chem. Eng. Processing 44: 393-402
  41. Solov‟ev, S.A.; and Orlik, S. N. 2009. Structural and functional design of catalytic converters for emissions from internal combustion engines. Kinet. Catal. 50: 705-714
  42. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. John Wiley & Sons, Inc. NewYork. 2001
  43. Choudhary, V.R.; and Pataskar, S.G. 1979. Thermal Analysis of Ammonium Copper Chromate. J. Thermal Anal. 17: 45-56
  44. Adkins, H.; Connor, R. 1931. The catalytic hydrogenation of organic compounds over copper chromite. J. Am. Chem. Soc. 53: 1091-1095
  45. Liawa, B.J.; Chen, Y.Z. 2000. Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups. Appl. Catal. A: Gen. 196: 199-207
  46. Hubaut, R.; Bonnelle, J.P.; and Daage, M. 1989. Selective hydrogenation of heavy polyunsaturated molecules on copper-chromium catalysts. J. Molec. Catal. 55: 170-183
  47. Narasimhan, V.; Patnaik, P.; and Ramamurthy, S. 1987. Proc. 8th Nat. Syrup. on Catalysis, Sindri February, India
  48. Hubaut, R.; Daage, M.; and Bonnelle, J.P.; 1986. Selective hydrogenation on copper chromite catalysts. Appl. Catal. 22: 243- 255
  49. Bezelgues, J-B.; Dijkstra A.J. 2009. Formation of trans fatty acids during catalytic hydrogenation of edible oils. In: Destaillats, F.; Se´be´dio, J-L.; Dionisi, F.; Chardigny, J-M. (eds). Trans fatty acids in human nutrition. The Oily Press, Bridgwater: 43-64
  50. Beers, A.; Mangnus, G.; 2004. Hydrogenation of edible oils for reduced trans-fatty acid content. Inform 15: 404-405
  51. Rangel, E.R. 2005. Contribution to the Study of Heterogeneous Catalytic Reactions in SCFs: Hydrogenation of Sunflower Oil in Pd Catalysts at Single-Phase Conditions. Ph.D. Thesis, Universitat Politècnica de Catalunya, France
  52. Alonzo, L.; Fraga, M.J.; Juarez, M. 2000. Determination of trans Fatty Acids in Margarines Marketed in Spain. J. Am. Oil Chem. Soc. 77: 131-136
  53. List, G.R. 2004. Decreasing trans and Saturated Fatty Acid Content in Food Oils. Food Technol. 58: 23-31
  54. Satchithanandam, S.; Oles, C.J.; Spease, C.J.; Brandt, M.M.; Yurawecz, M.P.; Rader, J.I. 2004. Trans, Saturated and Unsaturated Fat in Foods in the United States Prior to Mandatory trans-fat Labeling. Lipids. 39: 11-18
  55. Tarrago-Trani, M.T.; Phillips, K.M.; Lamar, L.E.; Holden, J.M. 2006. New and Existing Oils and Fats Used in Products with Reduced trans Fatty Acid Content. J. Am. Dietetic Assoc. 106: 867-880
  56. Floter, E.; Van Dujin, G. 2006. Trans free fats for use in food. In Modifying Lipids for use in foods. F.D. Gunstone, Ed., Woodhead Publishing Ltd.: Cambridge, England, 492-443
  57. Annemarie ,E.W.; and Beers Beers. 2007. Low trans hydrogenation of edible oils. Lipid Technol. 9(3): 56-58
  58. Koritala, S.; Butterfield, R.O.; Dutton, H.J. 1973. Kinetics of hydrogenation of conjugated triene and diene with nickel, palladium, platinum and copper-chromite catalysts. J Am Oil Chem Soc 50: 317-320
  59. Koritala, S; and Dutton, H.J. 1969. Selective Hydrogenation of Soybean Oil. IV. Fatty Acids Isomers Formed With Copper Catalysts. J. Am. Oil Chem. Soc. 46: 245-248
  60. [60] Kirschner, E.; and Lowrey, E.R. 1970. J. Am. Oil Chem. Soc. 47: 467
  61. Mounts, T.L.; Koritala, S.; Friedrich, J.P.; and Dutton, H.J. 1978..Selective hydrogenation of soybean oil: IX. Effect of pressure in copper catalysis. J. Am. Oil Chem. 55: 402-406
  62. Johansson, L.E. 1979. Copper Catalysts in the Selective Hydrogenation of Soybean and Rapeseed Oils: III. The Effect of Pressure when using Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 56: 987-991
  63. Koritala, S.; Friedrich, J.P.; and Mounts, T.L. 1980. Selective Hydrogenation of Soybean Oil: X. Ultra High Pressureand Low Pressure. J. Am. Oil Chem. 57: 1-5
  64. Johansson, L.E.; and Lundin, S.T. 1979. Copper Catalysts in the Selective Hydrogenation of Soybean and Rapeseed Oils: I. The Activity of the Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 56: 974-980
  65. Miya, B.; Hoshino, F.; and lwasa,I. 1966. Studies on the copper chromite catalyst: III. Increase in the activity of the copper chromite catalyst by the water-gas reaction. J. Catal. 5: 401-411 (1966)
  66. Moulton, K.J.; Beal, R.E.; and Griffin, E.L.; 1971. Hydrogenation of Soybean Oil With Commercial Copper-Chromite and Nickel Catalysts: Winterization of Low-Linolenate Oils. J. Am. Oil Chem. Soc. 48: 499-502
  67. Gray, S.I.; and Russell, L.F. 1979. J. Amer. Oil.Chem. Soc. 56: 36
  68. Cowan, J.C.; Koritala, S.; Warner, K.; List, G.B.; Moulton, K.J.; and Evans, C.D. 1973. Copper-Hydrogenated Soybean and Linseed Oils: Composition, Organoleptic Quality and Oxidative Stability. J. Amer. Oil Chem. Soc. 50(5): 132-136
  69. Fragale, C.; Gargano, M.; and Rossi, M.; 1982. Catalytic Hydrogenation of Vegetable Oils: II. The activity of the Prereduced Copper Chromite Catalyst. J. Am. Oil Chem. Soc. 59: 465-469
  70. Capece, F.M.; Castro, V.D.; Furlani, C.; Mattogno, G.; Fragale, C.; Gargano, M.; and, Rossi, M.; 1982. Copper chromite Catalysts: XPS structure elucidation and correlation with catalytic activity. J Electron Spectro. 27(2): 119-128
  71. Rieke, R.D.; Thakurb, D.S.; Robertsb, B.D.; and White, G.T.; 1997. Fatty Methyl Ester Hydrogenation to Fatty Alcohol Part I: Correlation between catalyst properties and activity/selectivity. J Am Oil Chem Soc. 74: 333-339
  72. Szukalska, E.; and Drozdowski, B. 1982. Selective Hydrogenation of Rapeseed Oils with Copper-Chromite Catalyst: Influence of Erucic Acid. J. Am. Oil. Chem. Soc. 59(3): 134 -139
  73. Lazier, W. A.; and Arnold, H. R. 1965. Organic Synthesis, Vol. II (John Wiley & Sons Inc, New York): 142
  74. Rao M.V.R.K. 1965. Hydrogenation of Aromatic Compounds. Suppl. Def. Sci. J: 131-136
  75. Pandey, A. 1997. Studies on Adkin‟s catalysts and their performance in vapour phase hydrogenation of nitrobenzene to aniline. Ph.D Thesis. Dept. Of Chem. Eng. and Technol, Banaras Hindu University, India
  76. Eley, D.D. 1968. Advances in Catalysis Vol. 18, Academic press inc. NY (London) Ltd
  77. Mo¨bus, K.; Wolf, D.; Benischke, H.; Dittmeier, U.; Simon, K.; Packruhn, U.; Jantke, R.; Weidlich, S.; Weber, C.; Chen, B. 2010 . Hydrogenation of Aromatic Nitrogroups with Precious metal powder catalysts: Influence of Modifier on Selectivity and Activity. Top Catal. 53:1126-1131
  78. Wknlak, J.; and Klein, M. 1984. Reduction of Nitrobenzene to Aniline. Ind. Eng. Chem. Prod. Res. Dev. 23(1): 44-50
  79. Choudhary, V.R.; Sansare, S.D.; Thite, G.A. 1988. Adsorption of Reaction Species for Hydrogenation of Nitrobenzene on Copper Chromite at Catalytic Conditions. J. Chem. Tech. Biotechnol. 42: 249-260
  80. Fang, X.; Yao, S.; Qing, Z.; Li, F. 1997. Study on silica supported Cu-Cr-Mo nitrobenzene hydrogenation catalysts. Appl. Catal. A: Gen. 161: 129-135
  81. Keki, H.; Ghardal and Sliepcevich, C.M. 1960. Copper catalysts in hydrogenating nitrobenzene to aniline. Ind. Eng. Chem. 52 (5): 417-420
  82. Jebarathinam, N.; Eswaramoorthy, M.; Krishnasamy, V.; 1996. Effect of substitution of Fe3+ in CuCr2O4 matrix for the hydrogenation of nitrobenzene. React. Kin. Catal. Lett. 58: 291-298
  83. Wiegers, W.J.; Spencer, M.A; Schreiber, W.L. 1986. Process for preparing mixture containig 2-campholenylidenbutanol, Product produced thereby and perfumery uses thereof. US Patents 4,619,781
  84. Giersch, W.K.; Ohloff, G. 1989 Bicylclic aliphatic alcohols and their utilization as perfuming ingredients. US Patents 4,818,747
  85. Shapiro, S. H. 1968. Fatty Acids and Their Industrial Applications, Marcel Dekker, Inc., New York: 123-128
  86. Billenstein, S.; and Blaschke, G. 1984. Industrial Production of Fatty Amines and Their, Derivatives. J. Amer. Oil Chem. Soc. 61: 353-357
  87. Gervajio, G.C. 2005. Fatty Acids and Derivatives from Coconut Oil. Bailey’s Industrial Oil and Fat Products, Sixth Edition, Six Volume Set. John Wiley & Sons, Inc
  88. Adkins, H. Reactions of Hydrogen with Organic Compounds over Copper-Chromium Oxide and Nickel Catalysts; Univ. Wisconsin Press: Madison, 1937; p 50
  89. Huang, W.; Li, H.; Zhu, B.; Feng, Y.; Wang, S.; Zhang, S. 2007. Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry. Ultrason. Sonochem. 14: 67-74
  90. Yurieva, T.M.; 1999. Mechanisms for activation of hydrogen and hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts. Catal. Today 51: 457-467
  91. Kang, H-C.; Lee, S-H.; Park, J-M.; Kim, D-P.; and Lee, B.M. 2009. Hydrogenation of Methyl Dodecanoate Using Copper Chromite. J. Korean Ind. Eng. Chem. 20(2): 201-207
  92. Shreiber, E.H.; Roberts, G.W.; 2000. Methanol dehydrogenation in a slurry reactor: evaluation of copper chromite and iron/titanium catalysts. Appl. Catal. B: Env. 26: 119-129
  93. Minyukova, T.P.; Simentsova, I.I.; Khasin, A.V.; Shtertser, N.V.; Baronskaya, N.A.; Khassin, A.A.; Yurieva, T.M.; 2002. Dehydrogenation of methanol over copper-containing catalysts. Appl Catal A: Gen. 237: 171-180
  94. Tonner, S.P.; Wainright, M.S.; Trimm, D.L.; Cant, N.W. 1984. Characterization of copper chromite catalysts for methanol dehydrogenation. Appl. Catal. 11: 93-101
  95. Rao, V.M.; Shankar, V. 1988. High activity copper catalyst for one-step conversion of methanol to methyl formate at low temperature. J. Chem. Tech. Biotechnol 42: 183-196
  96. Chono, M; Yamamoto, T. 1981. The synthesis of formaldehyde, methyl formate and hydrogen cynide. Shokubai 23(1): 3-8
  97. Tu, Y.J.; Chen, Y.W.; and Li, C.; 1994. Characterization of unsupported copper-chromium catalysts for ethanol dehydrogenation. J. Molec. Catal. 89(1-2): 179-18
  98. Chang, F-W.; Kuo, W.-Y.; Yang, H.-C. 2005. Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation. Appl. Catal. A: 288: 53-61
  99. Chang, F.W.; Yang, H.C.; Roselin, L.S.; Kuo, W.Y.; 2006. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl. Catal. A: Gen. 304: 30-39
  100. Pillai, R.B.C.; 1994. A study of the preactivation of a copper chromite catalyst. Catal. Lett. 26: 365-371
  101. Mooney, J.J. 1994. Exhaust control, automotive, in: Kirk-Othmer Encyclopedia of Chemical Technology 9, 4th Edition,Wiley/Interscience, New York: 982
  102. Rao, U.R.; Rajinderkumar; and Kuloor, N.R. 1969. Dehydrogenation of butyl alcohol in fixed catalyst beds. I&EC process design and develop. 8: 9-16
  103. Wang Z.; Ma H.; Zhu W.; Wang G. 2002. Characterization of Cu-ZnO-Cr2O3/SiO2 catalysts and application to dehydrogenation of 2-butanol to 2-butanone. React. Kinet. Catal. Letters 76 (2): 271-279(9)
  104. Shiau, C.Y.; Lee, Y.R. 2001. Characterization and dehydrogenation activity of Cr-added electroless plated copper catalyst. Appl. Catal..A: Gen. 220: 173-180
  105. Crivello, M.; Pe´rez, C.; Ferna´ndez, J.; Eimer, J.; Herrero, E.; Casuscelli, S.; Rodrı´guez-Castello´n, E. 2007. Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol. Appl. Catal. A: Gen. 317: 11-19
  106. Liang, C.; Ma, Z.; Ding, L.; Qiu, J. 2009. Template Preparation of Highly Active and Selective Cu–Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis. Catal. Lett. 130: 169-176
  107. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; and Lindner, F.; 2008. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem.10: 13-30
  108. Yang, L.; Joo, J.B.; Kim, Y.J.; Oh, S.; Kim, N.D.; and Yi, J. 2008. Synthesis of superacidic mesoporous alumina and its application in the dehydration of glycerol. Korean J. Chem. Eng. 25: 1014- 1017
  109. Song, S.H.; Lee, S.H.; Park, D. R.; Kim, H.; Woo, S.Y.; Song, W. S.; Kwon, M. S.; and Song, I.K. 2009. Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in a solvent-free batch reactor: Effect of experimental conditions. Korean J. Chem. Eng., 26: 382-386
  110. Dasari, M.A.; Kiatsimkul, P.; Sutterlin, W.R.; Suppes, G.J.; 2005. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A: Gen. 281: 225-231
  111. Chiu, W.; Dasari, M.A.; Sutterlin, W.R.; and Suppes, G.J.; 2006. Removal of Residual Catalyst from Simulated Biodiesel‟s Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol. Ind. Eng. Chem. Res. 45: 791-795
  112. Chiu, C-W.; Tekeei, A.; Ronco, J.M.; Banks, M-L.; and Suppes, G.J. 2008. Reducing Byproduct Formation during Conversion of Glycerol to Propylene Glycol. Ind. Eng. Chem. Res. 47: 6878-6884
  113. Dovell, F. S.; and Greenfield, H.; 1962. Copper chromite catalysts forreductive alkylation. I & E C Product Research and Development. 1(3): 179-181
  114. Ward, S.; Lamb, S. A.; Hodgson: M. A. E. (to ICI). Brix. Patent 712,100 (July 21, 1954); Ward, S., Lamb, S. A. (to ICI), Brit. Patent 716,239 (1954)
  115. Tsushima, R. 1997. Surfactants products from oleochemicals. Inform 8: 362-365
  116. Hark, S. V. D.; Härröd, M. 2001 Hydrogenation of oleochemicals at supercritical single-phase conditions: influence of hydrogen and substrate concentrations on the process. Appl. Catal. A: Gen. 210: 207-215
  117. Choudhary, V.R.; Dumbre, D.K.; Uphade, B.S.; Narkhede, V.S. 2004. Solvent-free oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide using transition metal containing layered double hydroxides and/or mixed hydroxides. J Mole Catal A: Chem. 215: 129-138
  118. George, K.; Sugunan, S.; 2008. Catalytic oxidation of cyclohexane over Cu-Zn-Cr ternery spinel system. React. Kinet. Catal. Lett. 94(2): 252-260
  119. Barman, S.; Acharya, N.C.P.A.; Pramanik, P. 2006. Kinetics of Reductive Isopropylation of Benzene with acetone over Nano-Copper Chromite-Loaded H-Mordenite. Ind. Eng. Chem. Res. 45: 3481-3487
  120. Pillai, R. B. C. 1994. Reductive alkylation of aniline over copper chromite catalyst: optimization of reaction conditions. Indian J. Chem. Sec. A, 33A (10): 941-943
  121. Pillai, R. B. C. 1993. References and further reading may be available for this article. To view references and further reading you must purchase this article.Synthesis of secondary amines by reductive alkylation using copper chromite catalyst: Steric effect of carbonyl compounds. J. Molec. Catal. 84(1): 125-129
  122. Rudolf, Z.; Paul, N.; Gerhard, F.; Herbert, D.1997: U.S. Patent 5639886
  123. Moree, W.J.; Ramirez-Weinhouse, M.M.; Shiota, T.; Imai, M.; Sudo, M.; Tsutsumi, T.;Endo, N.; Muroga, Y.; Hada, T.; Tanaka, H.; Morita, T.; Greene, J.; Barnum, D.; Saunders, J.; Kato, Y.; Myers, PL.; Tarby, CM. 2004. Small molecule antagonists of the CCR2b receptor. Part 2: Discovery process and initial structure-activity relationships of diamine derivatives. Bioorg. Med. Chem. Lett. 14: 5413
  124. Bai, G.; Li, Y.; Yan, X.; He, F.; and Chen, L. 2004. High efficiency cu-based catalysts for the cyclization of alkanolamines. React. Kinet. Catal. Lett. 82(1): 33-39
  125. Moss, P.H.; Bell, N. 1962. US Patent 3037023
  126. Armor, J.N.; 1999. The multiple roles for catalysis in the production of H2. Appl. Catal. A: Gen. 176: 159-176
  127. Baykara S.Z. 2004. Hydrogen production by direct solar thermal, decomposition of water, possibilities for improvement of process efficiency. Int J Hydrogen Energ. 29:1451-8
  128. Marshall, A.; Sunde, S.; Tsypkin, M.; and Tunold, R. 2007. Performance of a PEM water electrolysis cell using IrxRuyTazO2 electocatalysts for the oxygen evolution electrode. Int. J. Hydrogen Energy 32: 2320-2324
  129. Saadi, S.; Bouguelia, A.; Trari, M. 2006. Photocatalytic hydrogen evolution over CuCrO2. Sol. Energy 80: 272-280
  130. Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.; 2007. CuAlO2/TiO2 heterojunction applied to visible light H2 production. J. Photochem. Photobiol. A: Chem. 186: 242-247
  131. Zhang, P.; Chen, S.Z.; Wang, L.J.; Xu, J.M.; 2010. Overview of nuclear hydrogen production research through iodine sulfur process at INET. Int. J. Hydrogen Energy 35: 2883-2887
  132. Tagawa H.; and Endo T.; 1989. Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. Int. J. Hydrogen Energy 14(1): 11-17
  133. Bond, G.C. (Ed.), 2005. Metal-catalyzed Reactions of Hydrocarbons, Springer, New York, NY,
  134. Rostrup-Nielsen, J.R.; 2001. Conversion of hydrocarbons and alcohols for fuel cells. Phys. Chem. Chem. Phys. 3: 283-288
  135. Hohn, K. L.; and Lin. Y-C.; 2009. Catalytic Partial Oxidation of Methanol and Ethanol for Hydrogen Generation. Chem. Sus. Chem. 2: 927-940
  136. Prasad. R.1984. Syudies on compression moulded copper based catalysts and their performance in dehydrogenation of ethanol. Ph.D. Thesis, Banaras Hindu University, India
  137. Cheng, W.H.; Kung, H.H.; Cheng, W.H.; Kung, H.H. (Eds.), 1994. Methanol Production and Use, Chap. 1, Marcel Dekker, New York,
  138. Cheng, W.H. 1999. Development of Methanol Decomposition Catalysts for Production of H2 and CO. Acc. Chem. Res., 32: 685-691
  139. Yoon, H.; Stouffer, M.R.; Dubt, P.J.: Burke, F.P.; Curran, G.P. 1985. Methanol Dissociation for Fuel Use. Energy Prog. 5: 78-83
  140. Pattersson, L.; Sjostrom, K. 1991. Decomposed Methanol as a Fuel-a Review. Combust. Sci. Technol. 80: 265-303
  141. Carrette, L.; Friedrich, K.A.; Stimming, U. 2001. Fuel Cells: Fundamentals and Applications. Fuel Cells 1(1): 5-38
  142. Ma, L.; Gong, B.; Tran, T.; Wainwright, M.S.; 2000. Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal. Today 63: 499-505
  143. Ho¨hlein, B.; Boe, M.; Bogild-Hansen, J.; Bro¨ckererhoff, P.; Colsman, G.; Emonts, B.; Menzer, R.; Riedel, E.; 1996. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer. J. Power Sources 61: 143-147
  144. de Wild, P.J.; Verhaak, M.J.F.M.; 2000. Catalytic production of hydrogen from methanol. Catal. Today 60: 3-10
  145. Huang, X.; Ma, L.; Wainwright, M.S. 2004. The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl. Catal. A: Gen. 257: 235-243
  146. Cheng, W-H.; Chen, I.; Liou, J.-S.; and Lin, S-S.; 2003. Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol. Top Catal. 22: 3-4
  147. Chen, W-S.; Chang, F-W.; Roselin, L.S.; Ou, T-C.; Lai, S-C.; 2010. Partial oxidation of methanol over copper catalysts supported on rice husk ash. J. Mol. Catal. A: Chem. 318: 36-43
  148. Reuse, P.; Renken, A.; Haas-Santo, K.; Go¨rke, O.; Schubert, K.; 2004. Hydrogen production for fuel cell application in an autothermal micro-channel reactor. Chem. Eng. J. 101: 133-141
  149. Navarro, R.M.; Pena, M.A.; Merino, C.; Fierro, J.L.G.; 2004. Production of hydrogen by partial oxidation of methanol over carbon-supported copper catalysts. Top. Catal. 30/31: 481-486
  150. Wang, Z.; Xi, J.; Wang, W.; Lu, G.; 2003. Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts. J. Mol. Catal. A: Chem. 191: 123-134
  151. Horny, C.; Renken, A.; Kiwi-Minsker, L.; 2007. Compact string reactor for autothermal hydrogen production. Catal. Today 120: 45-53
  152. Bion, N.; Epron, F.; and Duprez, D. 2010. Bioethanol reforming for H2 production a comparison with hydrocarbon reforming. Catalysis 22: 1-55
  153. Ioannides, T.; and Neophytides, S.; 2000. Efficiency of a solid polymer fuel dell operating on ethanol. J. Power Sources 91: 150-156
  154. Casanovas, A.; Roig, M.; de Leitenburg, C.; Trovarelli, A.; Llorca, J.; 2010. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. Hydrogen Energy 35: 7690-7698
  155. Fatsikostas, A.; Kondarides, D.; and Verykios, X.; 2001. Steam Reforming of Biomass-Derived Ethanol for the production of Hydrogen for Fuel Applications. Chem. Commun. 9: 851-852
  156. Salge, J.R.; Deluga, G.A.; Schmidt, L.D. 2005. Catalytic partial oxidation of ethanol over noble metal catalysts. J. Catal. 235:69-78
  157. Chen H.; Yu, H.; Tang, Y.; Pan, M.; Yang, G.; Peng, F.; Wang, H.; Yang, J. 2009. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. J. Nat. Gas Chem. 18: 191-198
  158. Al-Hamamre, Z.; Hararah M.A. 2010. Hydrogen production by thermal partial oxidation of ethanol: Thermodynamics and kinetics study. Int. J. Hydrogen Energy 35: 5367-5377
  159. Dolgykh, L.Y.; Stolyarchuk, I. L.; Deynega, I.V.; and Strizhak, P.E.; 2005. Use of industrial dehydrogenation catalysts for the hydrogen production from bioethanol. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005: 13-15
  160. Tanaka Y.; Takeguchi T.; Kikuchi R.; Eguchi K.; 2005. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A: Gen. 279: 59-66
  161. Kusˇar, H.; Hocˇevar S.; Levec J.; 2006. Kinetics of the water-gas shift reaction over nanostructured copper-ceria catalysts. Appl. Catal. B: Environ. 63: 194-200
  162. Trimm D.L. 2005. Minimisation of carbon monoxide in a hydrogen stream for fuel cellapplication. Appl. Catal. A:Gen. 296: 1-11
  163. Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. 2003. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels. Appl. Catal. A: Gen. 242: 287-295
  164. Prasad, R.; Kennedy, L.A.; and Ruckenstein, E. 1984. Catalytic combustion. Catal. Rev. Sci. Eng. 26: 1-58
  165. Arai, H.; and Machida, M.; 1991. Recent progress in high temperature catalytic combustion. Catal. Today 10: 81-95
  166. Bosch, H.; and Janssen, F.; 1987. Formation and control of nitrogen oxides. Catal. Today 2 :369-379
  167. Eguchi, K.; and Arai, H.; 1996. Recent advances in high temperature catalytic combustion. Catal. Today 29: 379-386
  168. Burch, R.; and Loader, P.K.; 1994. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations. Appl. Catal. B: Env. 5: 149-164
  169. Sekizawa, K.; Eguchi, K.; Widjaja, H.; Machida, M.; and Arai, H. 1996. Property of Pd-supported catalysts for catalytic combustion. Catal. Today 28: 245-250
  170. Comino, G.; Gervasini, A.; and Ragaini, V.; 1997. Methane combustion over copper chromite catalysts. Catal. Lett. 48: 39-46
  171. Randy, B.; Kevin, C.; John, F.; Peter, A. F.; Lew, G.; Hunter, G.; Kent, H.; Mike, I. ; Mike, J.; David, K.; Rae, L.; David, L.; Marlene, L.; Lee, W.S.; Mark, S.; and Steve, W. 1996. Oxygenated gasoline. Motor Gasoline Technical Review 36: 45-53.7
  172. Chidambaram, V. Ph. D. Thesis. 2005. Evaluation of catalytic routes for the production of oxygenates from refinery feed stocks. Department of Chemistry, I.I.T. Madras, India
  173. Frey, S.J.; Schmidt, R.J.; Marker, T.L.; and Marinangeli, R.E.1998. Integrated process for producing diisopropyl ether, an isopropyl tertiary alkyl ether and isopropyl alcohol. U S Patent. 5, 705, 712
  174. Carlini, C.; Flego, C.; Marchionna, M.; Noviello, M.; Galletti, A.M.R.; Sbrana, G.; Basile, F.; Vaccari, A. 2004. Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous copper chromite/Mg-Al mixed oxides catalysts. J. Mol. Catal. A: Chem. 220: 215-220
  175. Kiennemann, A.; Irdris, H.; Hindermann, J.P.; Lavalley, J.C.; Vallet, A.; Chaumette, P.; Courty, Ph. 1990. Methanol synthesis on Cu/ZnAl2O4 and Cu/ZnOAl2O3 Catalysts: Influence of carbon monoxide pretreatment on the formation and concentration of formate species. Appl. Catal. 59:165-184
  176. Spencer M.S. 1987. Brass formation in copper-zinc catalysts. III. Surf Sci 192: 336-343
  177. Herwijnen, T.V.; De Jong, W.A. 1974. Brass formation in a copper/zinc oxide CO shift catalyst. J Catal 34: 209-214
  178. Jung K.D.; Joo O.S.; Han S.H.; Uhm S.J.; and Chung I.J. 1995. Catal. Lett. 35: 303
  179. Jung K.D.; and Joo O.S. 2002. Catal. Lett. 84: 21-25
  180. Venugopal, A.; Palgunadi, J.; Jung, K.D.; Joo, O.S.; Shin, C.H. 2008. Cu-Zn-Cr2O3 catalysts for Dimethyl Ether Synthesis: Structure and Activity Relationship. Catal. Lett. 123:142-149
  181. Fujimoto, K.; Asami, K.; Shikada, T.; Tominaga, H. 1984. Selective Synthesis of Dimethyl Ether from Synthesis Gas. Chem. Lett. 13 : 2051-2054
  182. Hansen, J.G; Voss, B.; Joensen, F.; Siguroardottir, I.D. 1995. SAE Technical Paper Series 950063
  183. Ohyama,S.; Kishida,H.; 1998 Physical mixture of CuO and Cr2O3 as an active catalyst component for low-temperature methanol synthesis via methyl formate. Appl. Catal. A: Gen. 172:241-247
  184. Nakamura, H.; Saeki, K.; Tanaka, M. 1988. Jpn. Patent 88/51129
  185. Tanaka, M.; Saeki, K. 1988. Jpn. Patent 88/51130
  186. Mahajan, D.; Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E. 1991. Homogeneous catalyst formulations for methanol production.U.S. Patent 4,992,480
  187. R.S. Sapienza, W.A. Slegeir, T.E. O'Hare, D. Mahajan, U.S. Patent 4,623,634 (1986)
  188. M. Marchionna, M. Lami, F. Ancillotti, R. Ricci, Ital. Patent 20028/A (1988)
  189. Onsager, O.T. Jpn. Patent 87/500867 (1987); 91/12048 (1991)
  190. P.AÊ . Sùrum, O.T. Onsager, in: Proc. 8th Int. Congr. On Catalysis, 2, 1984, 233
  191. Monti, D.M.; Kohler, M.A.; Wainwright, M.S.; Trimm, D.L.; Cant, N.W. 1986. Liquid phase hydrogenolysis of methyl formate in a semi batch reactor. Appl. Catal. 22: 123-136
  192. Palekar, V.M.; Jung, H.; Tierney, J.W.; Wender, I. 1993. Slurry phase synthesis of methanol with a potassium methoxide/copper chromite catalytic system. Appl. Catal. A 102: 13-34
  193. Palekar, V.M.; Tierney, J.W.; Wender, I. 1993. Alkali compounds and copper chromite as low-temperature slurry phase methanol catalysts. Appl. Catal. A 103: 105-122
  194. Gormley, R.J.; Rao, V.U.S.; Soong, Y.; Micheli, E. 1992. Methyl formate hydrogenolysis for low-temperature methanol synthesis. Appl. Catal. A 87: 81-101
  195. Trimm, D.L.; Wainwright, M.S. 1990. Steam reforming and methanol synthesis. Catal. Today 6: 261-278
  196. Ohyama, S.; 2003. Low-temperature methanol synthesis in catalytic systems composed of copper-based oxides and alkali alkoxides in liquid media: effects of reaction variables on catalytic performance. Top Catal. 22: 3-4
  197. Czernik, S.; Bridgwater, A.V.; 2004. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 18: 590-598
  198. Pattiya, A.; Titiloye, J.O.; Bridgwater, A.V. 2010. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89: 244-253
  199. Park, E. D.; Lee, D.; and Lee, H. C. 2009. Recent progress in selective CO removal in a H2-rich stream. Catal. Today 139: 280-290
  200. Cheng, W-H. 1996. Selective co oxidation in presence of H2. over Cu/Cr/Ba catalysts. React. Kinet. Catal. Lett. 58(2): 329-334
  201. Han, X.; Naeher, L.P. 2006. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 32: 106-120
  202. Kašpar, J.; Fornasiero, P.; Hickey, N. 2003. Automotive catalytic converters: current status and some perspectives. Catal. Today 77: 419-449
  203. Suresh, Y.; Sailaja Devi, M.M.; Manjari, V.; Das, U.N. 2000. Oxidant stress, antioxidants, and nitric oxide in traffic police of Hyderabad, India. Environ. Pollut. 109: 321-325
  204. Peters, A.; Liu, E.; Verier, R.I. 2000. Air pollution and incidence of cardiac arrhythmia. Epidemiology 11: 11-17
  205. Prasad, R.; and Bella, V.R. 2010. A Review on Diesel Soot Emission, its Effect and Control. Bull. Chem. React. Eng. Catal. 5(2): 69-86
  206. Miguel, A.H.; Eiguren-Fernandeza, A.; Jaquesa, P.A.; Froinesa, J.R.; Granta, B.L.; Mayo, P.R. 2004. Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in Claremon, California. Atmos. Environ. 38: 3241-51
  207. Gandhi, H.S.; Graham, G.W.; and McCabe, R.W. 2003. Automotive exhaust catalysis. J. Catal. 216: 433-442
  208. Acres, G.J.K.; and Harrison, B. 2004. The development of catalysts for emission control from motor vehicles: early research at Johnson Matthey. Top Catal. 28: 1-4
  209. Labhsetwar,N.; Biniwale, R.B.; Kumar,R.; Rayalu, R.; and Devotta, S. 2006. Application of supported perovskite-type catalysts for vehicular emission control. Catalysis Surveys from Asia 10 (1): 55-64
  210. Centi, G.; Arena, G.E.; and Perathoner, S. 2003. Nanostructured catalysts for NOx storage-reduction and N2O decomposition. J. Catal. 2003 216(1-2): 443-454
  211. Ferrandon, M. 2001. Mixed metal oxide-Noble metal catalyst for total oxidation of volatile organic matter and carbon monoxide. Ph. D. Thesis. Dept. of Chemical Engineering and Technology. Royal Institute of Technology, Stolkholm
  212. Stegenga, S.; Dekker, N.; Bijsterbosch, J.; Kapteijn, F.; Moulijn, J.; Belot, G.; Roche, R. 1991. Catalytic automotive pollution control without noble metals. In Catalysis and Automotive pollution Control II; Crucq, A., Ed.; Elsevier: Amsterdam. The Netherlands: 353-369
  213. Chien, C-C.; Chuang, W-P.; Huang, T-J. 1995. Effect of heat-treatment conditions on Cu-Cr/γ,-alumina catalyst for carbon monoxide and propene oxidation. Appl. Catal. A: Gen. 131: 73-87
  214. Kapteijn, F.; Stegenga, S.; Dekker, N.J.J.; Bijsterbosch, J.W.; Moulijn, J.A. 1993. Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification. Catal. Today 16: 273-287
  215. Severino, F.; Brito,J.; Carías, O.; Laine, J. 1986. Comparative study of alumina-supported CuO and CuCr2O4 as catalysts for CO oxidation. J. Catal. 102: 172-179
  216. Vass, M.I.; Georgescu, V. 1996. Complete oxidation of benzene on Cu-Cr and Co-Cr oxide catalysts. Catal. Today 29: 463-470
  217. Dekker, F.H.M.; Dekker, M. C.; Bliek, A.; Kapteijn, F.; Moulijn, J. 1994. A. A transient kinetic study of carbon monoxide oxidation over copper-based catalysts for automotive pollution control. Catal. Today 20: 409.-422
  218. Rajesh, H.; Ozkan, U.S. 1993. Complete Oxidation of Ethanol, Acetaldehyde, and Ethanol/Methanol Mixtures over Copper Oxide and Copper-Chromium Oxide Catalysts. Ind. Eng. Chem. Res. 32: 1622.-1630
  219. Heyes, C. J.; Irwin, J. G.; Johnson, H. A.; Moss, R. L. 1982. The catalytic oxidation of organic air pollutants. Part 2. Cobalt molybdate and copper chromite catalysts. J. Chem. Technol. Biotechnol. 32: 1034-1041
  220. Subbanna, P.; Greene, H.; Desal, F. 1988. Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol 22: 557.-561
  221. Annual report by Committee on Medical and Biological Effects of Environmental Pollutants. 1977. Carbon Monoxide. Washington, D.C.: National Academy of Sciences (U.S.). ISBN 0-309-02631-8
  222. Wolf, P.C. 1971. Carbon Monoxide measurement and Monitoring in Urbon air. Env. Sci. Tech. 5(3): 212-218
  223. Severino, F.; and Laine, J. 1983. Effect of Composition and Pre-treatments on the Activity of Copper-Chromite-based Catalysts for Oxidation of Carbon Monoxide. Ind. Eng. Chem. Prod. Res. Dev. 22: 396-401
  224. Laine, J.; Brito, J.; and Severino, F. 1990. Surface Copper Enrichment by Reduction of Copper-Chromite Catalyst for Carbon Monoxide Oxidation. Catal. Letters 5: 45-54
  225. Pantaleo, G.; Liotta, L.F.; Venezia, A.M.; Deganello, G.; Ezzo, E.M.; Kherbawi, M.A. El; Atia, H. 2009. Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2. Mater Chem Phys 114: 604-611
  226. Xavier, K.O.;Rashid, K.K.A.; Sen,B.; Yusuff, K.K.M.; and Chacko, J. 1998. Support effects on Cu-Cr/Al2O3 catalysts for CO oxidation. Stud. Surf. Sci. Catal. 113: 821-828
  227. Hertl, W.; Farrauto, R.J. 1973. Mechanism of carbon monoxide and hydrocarbon oxidation on copper chromite. J. Catal. 29: 352-360
  228. Park, P. W.; and Ledford, J.S. 1998. Characterization and CO oxidation activity of Cu/Cr/Al2O3 catalysts. Ind. Eng. Chem. Res. 37: 887-893
  229. Li, W.; Cheng, H.; 2008. Bi2O3/CuCr2O4-CuO core/shell structured nanocomposites: Facile synthesis and catalysis characterization. J. Alloy Compound 448: 287-292
  230. Wedding, B.; Farrauto, R.J. 1974. Rapid Evaluation of Automotive Exhaust Oxidation Catalysts with a Differential Scanning Calorimeter. Ind. Eng. Chem. Process Des. Dev. 13 (1): 45-47
  231. Morgan, W. L.; Farrauto, R.J. 1973. Active sites on a copper chromite catalyst. J. Catal., 31(1): 140-142
  232. Severino, F.; Brito, J.L.; Laine, J.; Fierro, J.L.G.; López Agudo, A. 1988. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. J. Catal., 177(1): 82-95
  233. Prasad, R.; Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal., 4(1): 5-9
  234. Farrauto, R.J.; Wedding, B. 1973. Poisoning by SOx of some base metal oxide auto exhaust catalysts. J. Catal. 33: 249-255
  235. Stegenga, S.; van Soest, R.; Kapteijn, F.; Moulijn, J.A. 1993. Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts. Appl. Catal. B 2: 257-275
  236. Shelef, M.; Otto, K.; and Otto, N.C. 1978. Poisoning of automotive catalysts. Adv. Catal. 27: 311-65
  237. Bartholomew, C.H. 2001. Mechanisms of catalyst deactivation. Appl Catal A: Gen. 212: 17-60
  238. Kummer, J.T. 1980. Catalysts for automobile emission control. Prog. Energy. Combust. Sci. 66: 177-199
  239. Kim, Y-W.; Rhee, H-K.; Kim, Y-Y.; Choi, I-S. 1987. Deactivation of supported copper chromite catalyst by sulfur dioxide or water vapour. Hwahak Konghak 25(5): 454-459
  240. Lauder, A. 1975. Metal Oxide Catalytic Compositions. U.S. Patent 3897367
  241. Royer, S.; Duprez¸ D. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. Chem. Cat. Chem. 3: 24-65
  242. Hayakawa, K.; Tang, N.; Kameda, T.; and Toriba, A. 2007. Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia. Asian J. Atmos. Environ. 1(1): 19-27
  243. Hayakawa, K.; Murahashi, T.; Akutsu, K.; Kanda, T.; Tang, N.; Kakimoto, H.; Toriba, A.; and Kizu, R. 2000. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates. Polycycl. Aromat. Comp. 20 : 179-190
  244. Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Miguel, A.H.; Hering, S.V.; and Hammond, S.K. 1999. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ. Sci. Technol. 33: 3091-3099
  245. Oda, J.; Nomura, S.; Yasuhara, A.; and Shibamoto, T. 2001. Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel. Atmos. Environ. 35 : 4819-4827
  246. Zhou, J.; Xia, Q.-H.; Shen, S.-C.; Kawi, S.; and Hidajat, K. 2004. Catalytic oxidation of pyridine on the supported copper catalysts in the presence of excess oxygen. J. Catal. 225: 128-137
  247. Blaha, D.; Bartlett, K.; Czepiel, P.; Harriss, R.; Crill,Atmos, 1999. Natural and anthropogenic methane sources in New England. Environ. 33 (2): 243-255
  248. Su, S.; Beath, A.; Guo, H.; Mallet, C. 2005. An assessment of mine methane mitigation and utilization technologies. Prog. Energy Combust. Sci. 3: 123-170
  249. Kunimi, H.; Ishizawa, S.; Yoshikawa, Y. 1997. Three-dimensional air quality simulation study on low-emission vehicles in southern California. Atmos. Environ. 31 (2): 145-58
  250. Beer, T.; Grant, T.; Williams, D.; Watson, H. 2002. Fuel-cycle green housegas emissions from alternative fuels in Australian heavy vehicles. Atmos. Environ. 36 (4): 753-763
  251. Goyal, P.; Sidhartha. 2003. Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos. Environ. 37 (38): 5423–5431
  252. Gambino, M.; Iannaccone, S.; Pidria, M.F.; Miletto, G.; Rollero, M.; 2004. in: World Automotive Congress F2 64-279
  253. Metz, B. 2001. Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2001
  254. Sidwell, R.W.; Zhu, H.; Kee, R.J.; Wickham, D.T. 2003. Catalytic combustion of premixed methane-in-air on a high-temperature hexaaluminate stagnation surface Combust. Flame 134 (1-2): 55-66
  255. Hui, K.S.; Chao, C.Y.H.; Kwong, C.W.; Wan, M.P. 2008. Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement. Combust. Flame 153: 119-129
  256. Ismagilov, I.Z.; Ekatpure, R.P.; Tsykoza, L.T.; Matus, E.V.; Rebrov, E.V.; de Croon, M.H.J.M.; Kerzhentsev, M.A. ; Schouten, J.C. 2005. Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining. Catal. Today 105: 516-528
  257. Harrison, P.G.; Lloyd, N.C.; and Azelee, W. 1995. Non-noble metal environmental catalysts: Synthesis, characterization and catalytic activity. Stud. Surf. Sci. Catal. 96: 487-496
  258. Price, D.; Birnbaum, R.; Batiuk, R.; McCullough, M.; Smith, R. 1997. Nitrogen Oxides: Impacts on Public Health and the Environment; EPA-452/R-97-002 (NTIS PB98-104631); U.S. Environmental Protection Agency, Office of Air and Radiation: Washington, DC
  259. Russo, N.; Fino, D.; Saracco, G.; Specchia, V. 2007. N2O catalytic decomposition over various spinel-type oxides. Catal. Today 119:228-232
  260. Amin, N.A.S.; Tan, E.F.; and Manan, Z.A. 2004. SCR of NOx by C3H6: comparison between Cu/Cr/CeO2 andCu/Ag/ CeO2 catalysts. J. Catal. 222: 100-106
  261. Kramlich, J.C.; Linak, W.P.; 1994. Prog. Nitrous oxide behaviour in the atmosphere, and in combustion and industrial systems. Energy Combust. Sci. 20: 149-202
  262. Wojtowicz, M.A.; Pels, J.R.; Moulijn, J.A.; 1993. Combustion of coal as a source of N2O emission. Fuel Proc. Technol. 34: 1-71
  263. Sloss, L.L.; Hjalmarsson, A.-K.; Soud, H.N.; Campbell, L.M.; Stone, D.K.; Shareef, G.S.; Emmel, T.; Maibodi, M.; Livengood, C.D.; Markussen, J. 1992. Nitrogen oxides control Technology fact book, Noyes Data Corporation, Park Ridge, NJ, USA: 8-14
  264. Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J.R. 2004. Bi2O3 as a selective sensing material for NO detection. Sens. Actuators B 99: 74-99
  265. Parvulescu, V.I.; Grange, P.; Delmon, B. 1998. Catalytic removal of NO. Catal. Today 46: 233-316
  266. Manney, G.L.; Froidevaux, L.; Waters, J.W. ; Zurek, R.W. ; Read, W.G.; Elson, L.S.; Kumer, J.B.; Mergenthaler, J.L.; Roche, A.E.; O'Nelll, A.; Harwood, R.S.; MacKenzie, I.; Swinbank, R.; Nature 370: 429; J. Kramlik, W.P. Linak, Prog. Energy Combust. Sci. 20: 149
  267. Armor, J.N. 1992. Environmental Catalysis. Appl. Catal. B: Environ. 1: 221-256
  268. White Paper: 1989. Selective Catalytic Reduction Controls to Abate NOx Emissions. Industrial Gas Cleaning Institute, Inc., Washington, D.C
  269. Shelef, M.; Gandhi, V. 1974. Ammonia formation in the catalytic reduction of nitric oxide. Ind. Eng. Chem
  270. Prod. Res. Dev. 13: 80-85
  271. Tarasov, A.L.; Osmanov, M.O.; Shvets, V.A.; Kazanskii, V.B. 1990. IR spectroscopic study of absorbed NO and CO, state of Cu-Cr/Al2O3 catalyst surface, and mechanism of reduction of NO by carbon monoxide. Kinet. Catal. 31: 565-571
  272. Lee, C.-Y.; Jung, T.-H.; Ha, B.-H. 1996. Characteristics of CuO-CrO,/mordenite and its catalytic activity for combustion and NO decomposition. Appl. Catal. B 9: 77-91
  273. Xu, X-L.; Chen, Z-K.; Chen, Z-N.; Li, J-Q.; Li, Y. 2008. Theoretical and Computational Developments Interaction of CO and NO with the spinel CuCr2O4 (100) surface: A DFT study. Int J Quantum Chem 108(9): 1435-1443
  274. Jie-Chung, L.; Hung-Wen, Y.; Chien-Hung, L. 2009. Preparing Copper/Manganese Catalyst by Sol–Gel Process for Catalytic Incineration of VOCs. Aerosol Air Quality Res. 9: 435-440
  275. Salvatore, S.; Simona, M.; Carmelo, C.; Cristina, S.; Alessandro, P. 2003. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B: Env. 40: 43-49
  276. Chai, K.S.; Geun, S.W. 2009. Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds. Appl. Catal. B: Env. 92: 429-436
  277. Bum, K.S.; Tae, H.H.; Chang, H.S. 2002. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere 48: 437-444
  278. Hazard Evaluation System and Information Service, Dept. of Health Services. www.dhs.ca.gov/ohb/ HESIS/toluene.htm, 2007
  279. Gervasini, A.; Vezzoli, G.C.; Ragaini, V. 1996. VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today 29: 449-455
  280. Aguado, S.; Coronas, J.; Santamaria, J. 2005. Use of zeolite membrane reactors for the combustion of VOCs present in air at low concentrations. Chem. Eng. Res. Design, 83(A3): 295-301
  281. Hinh, V.V.; Jamal, B.; Aissa, O-D.; Bechara, T. 2009. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst. J. Hazard Mater. 169: 758-765
  282. Zavyalova, U.; Nigrovski, B.; Pollok, K.; Langenhorst, F.; Mu¨ller, B.; Scholz, P.; Ondruschka, B.; 2008. Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination. Appl. Catal. B: Environ. 83: 221-228
  283. Cherkezova-Zheleva, Z.; Kolev, H.; Krsti, J.; Dimitrov, D.; Ivanov, K.; Loncarevi, D.; Jovanovi, D.; and Mitov, I.; 2009. Characterization of Double Oxide System Cu-Cr-O Supported on γ-Al2O3. Russian J. Phys. Chem. A 83(9): 1436-1441
  284. Sasidharan, N.S.; Deshingkar, D.S.; and Wattal, P.K. 2005. Report, BARC/2005/E/018 (2005)
  285. Zelenka, P.; Cartellieri, W.; and Herzog, P. 1996. Worldwide diesel emission standards, current experiences and future needs. Appl. Catal. B 10: 3-28
  286. Teraoka, Y.; and Kagawa, S. 1998. Simultaneous catalytic removal of NOx and diesel soot particulates. Catal. Surv. Jpn. 2: 155-164
  287. Shangguan, W.F.; Teraoka, Y.; Kagawa, S. 1996. Simultaneous catalytic removal of NO and diesel soot particulates over ternary ABO, spinel-type oxides. Appl. Catal. B: Env. 8: 217-227
  288. Amin, N.A.S.; Tan, E.F.; Manan, Z.A. 2003. Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts. Appl. Catal. B: Env. 43: 57-69
  289. Orlik. S. N. 2001. Contemporary problems in the selective catalytic reduction of nitrogen oxides (NOx). Theoret. Exper. Chem. 37(3): 135-162
  290. Gonzalez, M. A.; Liney, E.; Piel, W.; Natarajan, M.; Asmas, T.; Naegeli, D. W.; Yost, D.; Frame, E. A.; Clark, W.; Wallace, J. P.; Garback, J. 2001. SAE Paper. No. 01-01-3632
  291. Tailleur, R.G.; and Caris, P.C. 2009. Selective Oxidation of a hydrotreated light catalytic gas oil To produce low-emission diesel fuel. Energy Fuels 23: 799-804
  292. Votsmeier, M.; Kreuzer, T.; Lepperhoff, G. 2005. Automobile Exhaust Control. Automobile Exhaust Control. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  293. Solov‟ev, S. A.; Kurilets, Ya. P.; Orlik, S. N.; Pavlikov, V. N.; and Garmash, E. P. 2003. Oxidation of finely dispersed carbon on coated oxide catalysts. Theoret. Exper. Chem. 39(5): 330-335
  294. Atimtay, A.T. 2001. Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Prod. Proc. 2: 197-208
  295. Li, H.; 2008. Selective catalytic oxidation of hydrogen sulfide from syngas. M.S. Thesis. University of Pittsburgh
  296. Atimtay, A.T.; Gasper-Galvin L.D.; and Poston J.A.; 1993. Novel supported sorbent for hot gas desulphurization. Environ. Sci. Technol. 27(7): 1295-1303
  297. Gasper-Galvin, L.D.; Atimtay, A.T.; Gupta, R.P. 1998. Zeolite-Supported Metal Oxide Sorbents for Hot-Gas Desulfurization. Ind. Eng. Chem. Res. 37: 4157-4166
  298. Flytzani-Stephanopoulos, M.; Sakbodin, M.; Wang, Z;. 2006 Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Sci. 312: 1508-1510
  299. Ham, V. D.; Heesink, A.G.J.; Prins, A.B.M.; Swaaij, W.V.; W.P.M., 1996. Proposal for a regenerative high temperature process for coal gas cleanup with calcined limestone. Ind. Eng. Chem. Res. 35(5): 1487-1495
  300. Cheah, S.; Carpenter, D.L.; and Magrini-Bair, K.A. 2009. Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass and Coal-derived Syngas. Energy Fuels 23: 5291-5307
  301. Abbasian, J.; and Slimane, R.B. 1998. A regenerable copper-based sorbent for H2S removal from coal gases. Ind. Eng. Chem. Res. 37: 2775-2782
  302. Jadhav, R.A. 2006. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas. Official Monitor of Republic Moldova, 2002, No. 59-61: 19-26
  303. Ding, Z-Y.; Aki, S.N.V.K.; Abraham, M.A. 1995. Catalytic Supercritical Water Oxidation: Phenol Conversion and Product Selectivity. Environ. Sci. Technol.29 (11): 2748-2753
  304. Santos, A.; Yustos, P.; Quintanilla, A.; Garcia-Ochoa, F.; 2005. Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chem. Eng. Sci. 60: 4866 - 4878
  305. Akyurtlu, J.F.; Akyurtlu, A.; Kovenklioglu, S. 1998. Catalytic oxidation of phenol in aqueous solutions. Catal. Today 40: 343-352
  306. Wöllner, A.; Lange, F.; Schmelz, H.; Knözinger, H. 1993. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl. Catal. A: Gen. 94: 181-203
  307. Gang, L. 2002. Catalytic Oxidation of Ammonia to Nitrogen. Ph.D Thesis. Schuit Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, The Netherlands
  308. Huang, T.L.; Macinnes, J.M.; and Cliffe, K.R. 2001. Nitrogen Removal from Wastewater by a Catalytic Oxidation Method. Water Res. 35(9): 2113-2120
  309. Hung, C-M. 2007. Wet air oxidation of aqueous ammonia solution. catalyzed by bimetallic pt/rh nanoparticle Catalysts. J. Chinese Institute of Eng. 30(6): 977-981
  310. Martin, A.; Luck, F.; Armbruster, U.; Patria, L.; Radnik, J.; Schneider, M. 2005. Ammonia removal from effluent streams of wet oxidation under high pressure. Top Catal. 33(1-4): 155-169
  311. Samuel, D. F.; & Osman, M.A. 1998. Chemistry of water treatment: 127-196. USA: CRC
  312. Chen, S.; & Cao, G. 2006. Study on the photocatalytic oxidation of NO2- ions using TiO2 beads as a photocatalyst. Desalination 194(1-3): 127-134
  313. Canter, L.W. 1997. Nitrates in Groundwater. CRC Press, Boca Raton, FL
  314. Ketir, W.; Bouguelia, A.; Trari, M. 2009. Visible Light Induced NO2- Removal over CuCrO2 Catalyst. Water Air Soil Pollut. 199: 115-122
  315. Kawamoto, A.M.; Pardini, L.C.; Rezende, L.C.; 2004. Synthesis of copper chromite catalyst. Aerospace Sci. Technol. 8(7): 591- 598
  316. Rajeev, R.; Devi, K. A.; Abraham, A. et al. 1995. Thermal decomposition studies (Part 19): Kinetics and mechanism of thermal decomposition of copper ammonium chromate precursor to copper chromite catalyst and correlation of surface parameters of the catalyst with propellant burning rate. Thermochim. Acta 254(15): 235-247
  317. Patron, L.; Pocol, V.; Carp, O.; 2001. New synthetic route in obtaining copper chromite(I): Hydrolysis of some soluble salts. Mater. Res. Bull. 36(7/8): 1269-1276
  318. Armstrong, R.W.; Baschung, B.; Booth, D.W.; 2003. Enhanced propellant combustion with nanoparticles. Nano Lett. 3: 253-255
  319. Tagliaferro, F.S.; Fernandes, E.A.N.; Bacchi, M.A.; Campos, E.A.; Dutra, R.C.L.; Diniz, M.F. 2006. INAA for the validation of chromium and copper determination in copper chromite by infrared spectrometry. J. Radioanal. Nucl. Chem. 269: 403-406

Last update: 2021-02-24 18:41:08

No citation recorded.

Last update: 2021-02-24 18:41:14

  1. Selective hydrogenation of acetone in the presence of benzene

    Shutkina O.. Catalysis Today, 127 , 2013. doi: 10.1016/j.cattod.2013.05.017
  2. Jahn-Teller distorted Cu1-xNixCr2O4(x = 0, 0.5, 1) nanoparticles

    Rubengo F.. Surface Science Spectra, 27 (2), 2020. doi: 10.1116/6.0000444
  3. A novel route of single step reactive calcination of copper salts far below their decomposition temperatures for synthesis of highly active catalysts

    Prasad R.. Catalysis Science and Technology, 3 (12), 2013. doi: 10.1039/c3cy00626c
  4. Characterization of CuCr2O4 composite obtained by solution combustion synthesis

    Martins F.d.A.B.L.. Revista Materia, 24 (3), 2019. doi: 10.1590/s1517-707620190003.0741
  5. CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings

    Ma P.. Journal of Materials Engineering and Performance, 25 (7), 2016. doi: 10.1007/s11665-016-2143-z
  6. Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation

    Pascher T.. ChemistryOpen, 8 (12), 2019. doi: 10.1002/open.201900282
  7. Synthesis, characterization and photocatalytic activity of cubic-likeCuCr2O4for dye degradation under visible light irradiation

    Yuan W.. Applied Surface Science, 127 (1), 2014. doi: 10.1016/j.apsusc.2014.07.158
  8. Effect of Precipitant on Performance of CuCr2O4 Black Pigment

    Bai M.. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 46 (7), 2018. doi: 10.14062/j.issn.0454-5648.2018.07.05
  9. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    Beshkar F.. PLoS ONE, 12 (6), 2017. doi: 10.1371/journal.pone.0158549
  10. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Tripathi T.. APL Materials, 4 (4), 2016. doi: 10.1063/1.4946884
  11. Multicomponent Spinel Oxide Solid Solutions: A Possible Alternative to Platinum Group Metal Three-Way Catalysts

    Hirakawa T.. ACS Catalysis, 9 (12), 2019. doi: 10.1021/acscatal.9b03772
  12. Effective production of sorbitol and mannitol from sugars catalyzed by Ni nanoparticles supported on aluminium hydroxide

    Rodiansono R.. Bulletin of Chemical Reaction Engineering and Catalysis, 8 (1), 2013. doi: 10.9767/bcrec.8.1.4290.40-46
  13. Copper Chromite as Ballistic Modifier in a Typical Solid Rocket Propellant Composition: A Novel Synthetic Route Involved

    Viswanath J.. Journal of Energetic Materials, 36 (1), 2018. doi: 10.1080/07370652.2017.1313911
  14. CuO@NiO core-shell nanoparticles decorated anatase TiO2 nanospheres for enhanced photocatalytic hydrogen production

    Ravi P.. International Journal of Hydrogen Energy, 45 (13), 2020. doi: 10.1016/j.ijhydene.2019.05.020
  15. A review on CO oxidation over copper chromite catalyst

    Prasad R.. Catalysis Reviews - Science and Engineering, 54 (2), 2012. doi: 10.1080/01614940.2012.648494
  16. Water: Friend or foe in catalytic hydrogenation? A case study using copper catalysts

    Govender A.. Catalysts, 8 (10), 2018. doi: 10.3390/catal8100474
  17. Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor

    Appalakutti S.. Chemical Engineering and Processing - Process Intensification, 89 , 2015. doi: 10.1016/j.cep.2014.12.012
  18. Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn-Teller distorted NiCr2O4 powders

    Ptak M.. Journal of Solid State Chemistry, 127 , 2013. doi: 10.1016/j.jssc.2013.03.023
  19. The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural

    Islam M.J.. Applied Catalysis B: Environmental, 127 , 2020. doi: 10.1016/j.apcatb.2020.119062
  20. Conversion of glycerol to lactic acid over Cu–Zn–Al and Cu–Cr catalysts in alkaline solution

    Li K.. Journal of the Taiwan Institute of Chemical Engineers, 79 , 2017. doi: 10.1016/j.jtice.2017.03.029
  21. Investigation on the Thermal Behavior of Ammonium Dinitramide with Different Copper-Based Catalysts

    Li Y.. Propellants, Explosives, Pyrotechnics, 45 (10), 2020. doi: 10.1002/prep.202000065
  22. Preparation and characterization of the CuCr2O4 nanostructures via a new simple route

    Beshkar F.. Journal of Materials Science: Materials in Electronics, 26 (7), 2015. doi: 10.1007/s10854-015-3024-1
  23. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts

    Ambursa M.M.. Renewable and Sustainable Energy Reviews, 127 , 2021. doi: 10.1016/j.rser.2020.110667
  24. Synthesis and characterization of Mn-doped copper chromite black pigments

    Ye M.. Advanced Materials Research, 127 , 2013. doi: 10.4028/www.scientific.net/AMR.602-604.7
  25. Characterization of CuCr2O4-based materials prepared by solution combustion synthesis for use as pigments

    Coelho M.B.M.. Ceramica, 64 (127), 2018. doi: 10.1590/0366-69132018643692183
  26. Hydrogen production by ethanol decomposition and partial oxidation over copper/copper-chromite based catalysts prepared by combustion synthesis

    Carotenuto G.. Catalysis Today, 127 , 2013. doi: 10.1016/j.cattod.2012.05.022
  27. Catalysts

    Avci A.. Comprehensive Energy Systems, 2 , 2018. doi: 10.1016/B978-0-12-809597-3.00235-2
  28. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects

    Aljammal N.. Coordination Chemistry Reviews, 127 , 2019. doi: 10.1016/j.ccr.2019.213064
  29. Selective benzylic oxidation of alkylaromatics over Cu/SBA-15 catalysts under solvent-free conditions

    Neeli C.K.P.. Catalysis Communications, 39 , 2013. doi: 10.1016/j.catcom.2013.04.023
  30. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour

    Busca G.. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour, 2014. doi: 10.1016/C2012-0-00113-5
  31. Catalysts for Fatty Alcohol Production from Renewable Resources

    Thakur D.S.. JAOCS, Journal of the American Oil Chemists' Society, 93 (12), 2016. doi: 10.1007/s11746-016-2902-x
  32. The influence of technological parameters on hydrogenolysis of Glycerol in the presence of CuCr2O4 catalyst

    Wolosiak-Hnat A.. Journal of Advanced Oxidation Technologies, 15 (2), 2012. doi: 10.1515/jaots-2012-0221
  33. TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst

    Paulose S.. Journal of Thermal Analysis and Calorimetry, 124 (2), 2016. doi: 10.1007/s10973-015-5207-7
  34. Synthesis of Cu–Cr diketo, sublimable, eutectic composite complex, rod crystals from LDH as suitable MOCVD precursor of CuCr2O4 catalysts upon ceramic preforms for N2O decomposition

    Saikia P.. Materials Today Chemistry, 7 , 2018. doi: 10.1016/j.mtchem.2017.12.001
  35. Ni-based chromite spinel for high-performance supercapacitors

    Xu X.. RSC Advances, 6 (35), 2016. doi: 10.1039/C5RA27931C
  36. Effects of magnesium and chromium addition on stability, activity and structure of copper-based methanol synthesis catalysts

    Ay S.. International Journal of Hydrogen Energy, 2021. doi: 10.1016/j.ijhydene.2021.01.069
  37. Inverse co-precipitation synthesis of copper chromite nanoparticles

    Tavakoli H.. Iranian Journal of Chemistry and Chemical Engineering, 35 (1), 2016.