Production of Silver Nanoparticle Chains inside Single Wall Carbon Nanotube with a Simple Liquid Phase Adsorption

*Alimin Alimin  -  Department of Chemistry, Universitas Halu Oleo, Kampus Hijau BumiTridharma Anduonohu-Kendari 93232,, Indonesia
Narsito Narsito  -  Department of Chemistry, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281,, Indonesia
Indriana Kartini  -  Department of Chemistry, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281,, Indonesia
Sri J. Santosa  -  Department of Chemistry, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281,, Indonesia
Received: 13 Apr 2015; Published: 30 Dec 2015.
Open Access
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 1111 1437
Abstract

This article described a successful growing of silver nanoparticle chains (AgNPs) within the internal spaces of single wall carbon nanotube (SWCNT). The use of ethanol in the liquid phase adsorption could produce relatively long silver nanoparticle chains encapsulated in the nanotubes (AgNPs-SWCNT). A significant decrease of nitrogen uptake and radial breathing mode (RBM) as well as tan-gential mode (G band) upshifts of AgNPs-SWCNT specimen suggest that the nanoparticles have been encapsulated in the internal tube spaces of the nanotube. The presence of metallic silvers on the exter-nal surface of the carbon nanotube that was observed by scanning electron microscope and examined by X-ray diffraction technique was successfully able to be removed by ultrasonic using 1 M HNO3. The remaining small residue obtained after thermal gravimetric analysis up to 1100 K supports the sugges-tion on the presence of silver encapsulated inside SWCNT. © 2015 BCREC UNDIP. All rights reserved

Received: 13rd April 2015; Revised: 4th September 2015; Accepted: 9th September 2015

How to Cite: Alimin, A., Narsito, N., Kartini, I., Santosa, S.J. (2015). Production of Silver Nanoparticle Chains inside Single Wall Carbon Nanotube with a Simple Liquid Phase Adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (3): 266-274. (doi:10.9767/bcrec.10.3.8416.266-274)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.3.8416.266-274

Keywords
Silver nanoparticles; SG-SWCNT; silver nitrate; ethanol; liquid phase adsorption

Article Metrics:

  1. Niu, A., Han, Y.,Wu, J., Yu, N., Xu, Q. (2010). Synthesis of One-Dimensional Carbon Nano-materials Wrapped by Silver Nanoparticles and Their Antibacterial Behavior. Journal of Physical Chemistry. C, 114: 12728-12735.
  2. You, C., Han, C., Wang, X., Zheng, Y., Li, Q., Hu, X., Sun, H. (2012). The Progress of Silver Nanoparticles in the Antibacterial Mecha-nism, Clinical Application and Cytotoxicity, Molecular Biology Report, 39: 9193-9201.
  3. Gong, H. M., Zhou, Z.K., Xiao, S., Su, X.R., Wang, Q.Q. (2008). Strong Near-infrared Ava-lanche Photoluminescence from Ag Nanowire Arrays, Plasmonics, 3: 59-64.
  4. Margueritat, J., Gonzalo, J., Afonso, C.N., Mlayah, A., Murray, D.B., Saviot, L. (2006). Surface Plasmons and Vibrations of Self-Assembled Silver Nanocolumns, Nano Letter, 6 (9): 2037-2042.
  5. Choi, S.K., Chun, K.Y., Lee, S.B. (2009). Selec-tive Decoration of Silver Nanoparticles on the Defect Sites of Single-Walled Carbon Nano-tubes, Diamond & Related Materials, 18: 637-641.
  6. Fu, H., Yang, X., Yu, A., Jiang, X. (2013). Rapid Synthesis and Growth of Silver Nanoparticles Induced by Vanadium Trioxide Particles, Par-ticuology. 11: 428-440.
  7. Lee, J.H., Lee, P., Lee, D., Lee, S.S., Ko, S.H. (2012). Large-Scale Synthesis and Characteri-zation of Very Long Silver Nanoparticles via Successive Multistep Growth, Crystal Growth Design, 12: 5598-5605.
  8. Kobayashi, K., Suenaga, K., Saito, T., Shino-hara, H., Iijima, S. (2010). Photoreactivity Preservation of AgBr Nanoparticles in Con-fined Nanospaces, Advanced Materials, 22: 3156-3160.
  9. Borowiak-Palen, E., Ruemmeli, M.H., Gem-ming, T., Pichler, T., Kalenczuk, R.J., Silva, S.R.P. (2006). Silver Filled Single-Wall Carbon Nanotubes - Synthesis, Structural and Elec-tronic Properties, Nanotechnology, 17: 2415-2419.
  10. Kharlamova, M.V., Niu, J.J. (2012). Compari-son of Metallic Silver and Copper Doping Ef-fects on Single-Walled Carbon Nanotubes, Ap-plied Physics. A, 109: 25-29.
  11. Eliseev, A.A., Yashina, L.V., Brzhezinskaya, M.M., Chernysheva, M.V., Kharlamova, M.V., Verbitsky, N.I., Lukashin, A.V., Kiselev, N.A., Kumskov, A.S., Zakalyuhin, R.M., Hutchison, J.L., Freitag, B., Vinogradov, A.S. (2010). Structure and Electronic Properties of AgX (X = Cl, Br, I)-Intercalated Single-Walled Carbon Nanotubes, Carbon, 48: 2708-2721.
  12. Ilie, A., Crampin, S., Karlsson, L., Wilson, M. (2012). Repair and Stabilization in Confined Nanoscale Systems-Inorganic Nanoparticles within Single-Walled Carbon Nanotubes, Nano Research, 5 (12): 833-844.
  13. Fortunati, E., D’Angelo, F., Martino, S., Orlac-chio, A., Kenny, J.M., Armentano, I. (2011). Carbon Nanotubes and Silver Nanoparticles for Multifunctional Conductive Biopolymer Composites, Carbon, 49: 2370-2379.
  14. Sahoo, S., Husale, S., Karna, S., Nayak, S.K., Ajayan, P.M. (2011). Controlled Assembly of Ag Nanoparticles and Carbon Nanotube Hy-brid Structures for Biosensing, Journal of the American Chemical Society. 133: 4005-4009.
  15. Tokuno, T., Nogi, M., Jiu, J., Suganuma, K. (2012). Hybrid Transparent Electrodes of Sil-ver Nanoparticles and Carbon Nanotubes: A Low-Temperature Solution Process, Nano-scale Research Letters, 7(281): 1-7
  16. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S. (2004). Water-Assisted Highly Efficient Synthesis of Impu-rity-Free Single-Walled Carbon Nanotubes Science, 306: 1362-1364
  17. Ohba, T., Kaneko, K. (2002). Internal Surface Area Evaluation of Carbon Nanotube with GCMC Simulation-Assisted N2 Adsorption, Journal of Physical Chemistry. B, 106: 7171-7176.
  18. Setoyama, N., Suzuki, T., Kaneko, K. (1998). Simulation Study on the Relationship Be-tween A High Resolution As-Plot and the Pore Size Distribution for Activated Carbon, Car-bon, 36: 1459-1467.
  19. Kaneko, K., Itoh, T., Fujimori, T. (2012). Collec-tive Interactions of Molecules with an Interfa-cial Solid, Chemical Letters, 41: 466-475.
  20. Jorio, A., Pimenta, M.A., Souza Filho, A.G., Saito, R., Dresselhaus, G., Dresselhaus, M.S. (2003). Characterizing Carbon Nanotube Samples with Resonance Raman Scattering, New Journal of Physics, 5: 139.1-139.17.
  21. Maniwa, Y., Kumazawa, Y., Saito, Y., Tou, H., Kataura, H., Ishii, H., Suzuki, S., Achiba, Y., Fujiwara, A., Suematsu, H. (1999). Anomaly of X-ray Diffraction Profile in Single-Wall Carbon Nanotubes, Japanese Journal of Ap-plied Physics, 38: 668-670.
  22. Miyata, Y., Yanagi, K., Maniwa, Y., Tanaka, T., Kataura, H. (2008). Diameter Analysis of Rebundled Single-Wall Carbon Nanotubes Using X-ray Diffraction: Verification of Chirality Assignment Based on Optical Spec-tra, Journal Physical Chemistry C, 112: 15997-16001.
  23. Khoerunnisa, F., Fujimori, T., Itoh, T., Urita, K., Hayashi, T., Kanoh, H., Ohba, T., Hong, S.Y., Choi, Y.C., Santosa, S.J., Endo, M., Ka-neko, K. (2012). Enhanced CO2 Adsorptivity of Partially Charged Single Walled Carbon Nano-tubes by Methylene Blue Encapsulation, Jour-nal of Physical Chemistry C, 116: 11216-11222.
  24. Sun, Y., Xia, Y. (2002). Shape-Controlled Syn-thesis of Gold and Silver Nanoparticles, Sci-ence, 298: 2176-2179.
  25. Ayyappan, S., Gopalan, R.S., Subbanna, G.N., Rao, C.N.R. (1997). Nanoparticles of Ag, Au, Pd, and Cu Produced by Alcohol Reduction of the Salts, Journal of Materials Research, 12(2): 398-401.
  26. Grieser, F and Hobson, R., Sostaric, J., Mul-vaney, P. (1996). Sonochemical Reduction Processes in Aqueous Colloidal Systems, Ultra-sonics, 34: 547-550.
  27. Ashokkumar, M., Grieser, F. (2002). Sono-chemical Preparation of Colloids, Encyclopedia of Surface and Colloid Science, Marcel Dekker, Inc.
  28. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C. (1996). Science of Fullerenes and Carbon Nanotubes, Academic Press.
  29. Bard, A.J., Faulkner, L.R. 2nd ed. (2001). Elec-trochemical Methods-Fundamental and Appli-cation. John Wiley & Sons.Inc.
  30. Suzuki, S., Bower, C., Watanabe, Y., Zhou, O. (2000). Work Functions and Valence Band States of Pristine and Cs-Intercalated Single Walled Carbon Nanotube Bundles, Applied Physic Letters, 76(26): 4007-4009.
  31. Choi, H.C., Shim, M., Bangsaruntip, S., Dai, H. (2002). Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes, Journal of American Chemical Society, 124: 9058-9059.