skip to main content

Utilization of Renewable and Waste Materials for Biodiesel Production as Catalyst

*Prashant Kumar  -  Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar-144011, India
Anil Kumar Sarma  -  Chemical Conversion Division, Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, Punjab-144601, India
M. K. Jha  -  Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar-144011, India
Ajay Bansal  -  Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar-144011, India
Bharvee Srivastava  -  Department of Chemical Engineering, S.D. College of Engineering and Technology Muzaffarnagar-251001, India

Citation Format:
Cover Image

The efficient and economic utilization of natural renewable and waste materials of various industries and biomass having non-homogeneous composition is a new dimension of research for biodiesel pro- duction. A combination of these renewable, waste materials and traditional heterogeneous catalyst can also be looked after for the possible solution of heterogeneous catalytic transesterification. This review discusses industrially derived and naturally occurring materials containing calcium, sodium, potassium etc, which were found instrumental for biodiesel production. About 60 research articles and patents have been reviewed and the findings are analysed in this article for developing industrial scale heterogeneous catalytic pilot plant facilities for biodiesel production. © 2015 BCREC UNDIP. All rights reserved.

Received: 25th May 2015; Revised: 17th June 2015; Accepted: 10th July 2015

How to Cite: Kumar, P., Sarma, A.K., Jha, M.K., Bansal, A., Srivasatava, B. (2015). Production Utilization of Renewable and Waste Materials for Biodiesel Production as Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (3): 221-229. (doi:10.9767/bcrec.10.3.8584.221-229)


Fulltext View|Download
Keywords: Catalyst; Waste Material; Calcium; Potassium

Article Metrics:

  1. Jothiramalingam, R., Wang, M. K. (2009). Re-view of Recent Developments in Solid Acid, Base, and Enzyme Catalysts (Heterogeneous) for Biodiesel Production via Transesterifica-tion. Industrial & Engineering Chemistry Re-search. 48: 6162-6172
  2. Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I. A., Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emis-sions production. Renewable and Sustainable Energy Reviews. 18: 211-245
  3. Mat, R., Ling, O. S., Johari, A., Mohamed, M. (2011). In Situ Biodiesel Production from Re-sidual Oil Recovered from Spent Bleaching Earth. Bulletin of Chemical Reaction Engi-neering & Catalysis. 6 (1): 53-57, doi:
  4. 9767/bcrec.6.1.678.53-57
  5. Giovanna, L., Roberto, A. B., José, A. D. R., Suzana, M. R.,Marcelo, Z. (2012). Effect of Feed Strategy on Methane Production and Performance of an AnSBBR Treating Effluent from Biodiesel Production. Applied Biochem-istry and Biotechnology.166: 2007-2029
  6. Sankaranarayanan, T.M., Pandurangan, A., Banu, M., Sivasanker, S. (2011). Transesteri-fication of sunflower oil over MoO3 supported on alumina. Applied Catalysis A: General. 409-410: 239-247
  7. Murugesan, A., Umarani, C., Subramanian, R., Nedunchezhian, N. (2009). Bio-diesel as an alternative fuel for diesel engines-A re-view. Renewable and Sustainable Energy Re-views. 13: 653-662
  8. Gunatilake, H., Roland-Holst, D., Sugiyarto, G. (2014). Energy security for India: Biofuels, energy efficiency and food productivity. En-ergy Policy. 65: 761-767
  9. Reinoso, D.M., Damiani, D.E., Tonetto, G.M. (2014). Zinc glycerolate as a novel heterogene-ous catalyst for the synthesis of fatty acid methyl esters. Applied Catalysis B: Environ-mental. 144: 308-316
  10. López, D.E., Suwannakarn, K., Bruce, D.A., Goodwin Jr., J.G. (2007). Esterification and transesterification on tungstated zirconia: Ef-fect of calcination temperature. Journal of Catalysis. 247: 43-50
  11. Bello, E.I., Mogaji, T.S., Agge, M. (2011). The effects of transesterification on selected fuel properties of three vegetable oils. Journal of Mechanical Engineering Research. 3(7): 218-225
  12. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification Of High Free Fatty Acid Oil (Waste Cooking Oil) To Bio-diesel: A Review. Biotechnology Advances 28: 500-518
  13. Chouhan, A.P.S., Sarma, A.K. (2011). Modern heterogeneous catalysts for biodiesel produc-tion: A comprehensive review. Renewable and Sustainable Energy Reviews. 15: 4378-4399
  14. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances. 28: 500-518
  15. Semwal, S., Arora, A.K., Badoni, R.P., Tuli, D. K. (2011). Biodiesel production using hetero-geneous catalysts. Bioresource Technology. 102: 2151-2161
  16. Meher, L.C., Dharmagadda, V.S.S., Naik, S.N. (2006). Optimization of alkali-catalyzed transesteriWcation of Pongamia pinnata oil for production of biodiesel. Bioresource Tech-nology. 97: 1392-1397
  17. Endalew, A.K., Kiros, Y., Zanzi, R. (2011). Heterogeneous catalysis for biodiesel produc-tion from Jatropha curcas oil (JCO). Energy. 36: 2693-2700
  18. Suppes, G.J., Bockwinkel, K., Lucas, S., Botts. J.B., Mason, M.H., Heppert, J.A. (2001). Cal-cium carbonate catalyzed alcoholysis of fats and oils. Journal American Oil Chemistry So-ciety. 78(2): 139-145
  19. Kim, H.J., Kang, B.S., Kim, Park, Y.M., Kim, D.K., Lee, J. S., Lee, K.Y. (2004). Transesteri-fication M.J. of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today. 93-95: 315-320
  20. Eckey, E.W. (1956). Esterification and inter-esterification. Journal American Oil Chemis-try Society. 33: 575-579
  21. Paola, M.G.D., Ricca, E., Calabrò, V., Curcio, S., Iorio, G. (2009). Factor analysis of trans-esterification reaction of waste oil for bio-diesel production. Bioresource Technology 100: 5126-5131
  22. Serio, M.D., Tesser, R., Pengmei, L., Santace-saria, E. (2008) Heterogeneous Catalysts for Biodiesel Production. Energy & Fuels 22: 207-217
  23. Koberg, M., Much, R.A., Gedanken, A. (2011). Optimization of bio-diesel production from soybean and wastes of cooked oil:Combining dielectric microwave irradiation and a SrO catalyst. Bioresource Technology. 102: 1073-1078
  24. Liu, X., He, H., Wang, Y., Zhu, S. (2007). Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications. 8: 1107-1111
  25. Chen, C.L., Huang, C.C., Tran, D.T., Changa, J.S. (2012). Biodiesel synthesis via heteroge-neous catalysis using modified strontium ox-ides as the catalysts. Bioresource Technology 113: 8-13
  26. Boro, J., Deka, D., Thakur, A.J. (2012). A re-view on solid oxide derived from waste shells as catalyst for biodiesel production. Renew-able and Sustainable Energy Reviews. 16: 904-910
  27. Vasudevan, P.T., Fu, B. (2010). Environmen-tally Sustainable Biofuels: Advances in Bio-diesel Research, Waste and Biomass Valoriza-tion.1: 47-63
  28. Aderemi, B.O., Hameed, B.H. (2009). Alum as a heterogeneous catalyst for the transesterifi-cation of palm oil. Applied Catalysis: A Gen-eral. 370: 54-58
  29. Ilgen, O. (2011). Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Processing Technology 92: 452-455
  30. Ngamcharussrivichai, C., Nunthasanti, P., Tanachai. S., Bunyakiat, K. (2010). Biodiesel production through transesterification over natural calciums. Fuel Processing Technology. 91: 1409-1415
  31. Ho, W.W.S., Ng, H.K., Gan, S. (2012). Devel-opment and characterisation of novel hetero-geneous palm oil mill boiler ash-based cata-lysts for biodiesel production, Bioresource Technology. 125: 158-164
  32. Boey, P.L., Ganesan, S., Lim, S. X., Lim, S.L., Maniam, G. P., Khairuddean, M. (2011). Utili-zation of BA (boiler ash) as catalyst for trans-esterification of palm olein. Energy. 36: 5791-5796
  33. Chouhan, A.P.S., Sarma, A.K. (2013). Bio-diesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as hetero-geneous catalyst. Biomass and Bioenergy. 55: 386-389
  34. Sharma, M., Khan, A.A., Puri, S.K., Tuli, D.K. (2012). Wood ash as a potential heterogene-ous catalyst for biodiesel synthesis. Biomass and Bioenergy. 41: 94-106
  35. Yaakob, Z., Sukarman, I.S.B., Narayanan, B., Abdullah, S.R.S., Ismail, M. (2012). Utiliza-tion of palm empty fruit bunch for the produc-tion of biodiesel from Jatropha curcas oil. Bio-resource Technology. 104: 695-700
  36. Chen, G.Y., Shan, R., Shi, J.F., Yan, B.B. (2015). Transesterification of palm oil to bio-diesel using rice husk ash-based catalysts. Fuel Processing Technology. 133: 8-13
  37. Vadery, V., Narayanan, B.N., Ramakrishnan, R.M., Cherikkallinmel, S.K., Sugunan, S., Na-rayanan, D.P., Sasidharan, S. (2014). Room temperature production of Jatropha biodiesel over coconut husk ash. Energy. 70: 588-594
  38. Kumar, P., Aslam, M., Singh, N., Mittal, S., Bansal, A., Jha, M.K., Sarma, A.K. (2015).Characterization activity and process optimization with a biomass-based thermal power plant's fly ash as a potential catalyst for biodiesel production. RSC Advances. 5: 9946-9954
  39. Sarma, A.K., Kumar, P., Aslam, M., Chouhan, A.P.S. (2014). Preparation and Characteriza-tion of Musa balbisiana Colla Underground Stem Nano-material for Biodiesel Production under Elevated Conditions. Catalysis Letters. 144 (7): 1344-1353
  40. Chakraborty, R., Bepari, S., Banerjee, A. (2011). Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresource Technology. 102: 3610-3618
  41. Obadiah, A., Swaroopa, G.A., Kumar, S.V., Jeganathan, K.R., Ramasubbu, A. (2012). Bio-diesel production from Palm oil using calcined waste animal bone as catalyst Bioresource Technology. 116: 512-516
  42. Farooq, M., Ramli, A., Naeem, A. (2015). Bio-diesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy 76: 362-368
  43. Boro, J., Thakur, A.J., Deka, D. (2011). Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Processing Technology. 92: 2061-2067
  44. Boro, J., Konwar, L.J., Thakur , A.J., Deka, D. (2014). Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogene-ous catalyst for biodiesel production, Fuel 129: 182-187
  45. Empikul, N.V., Krasae, P., Nualpaeng, W., Yoosuk, B., Faungnawakij, K. (2012). Bio-diesel production over Ca-based solid cata-lysts derived from industrial wastes, Fuel 92: 239-244
  46. Hu, S., Wang,Y., Han, H. (2011). Utilization of waste freshwater mussel shell as an eco-nomic catalyst for biodiesel production. Bio-mass and Bioenergy. 35: 3627-3635
  47. Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous cata-lyst for biodiesel production. Renewable En-ergy 50: 795-799
  48. Niju, S., Begum, K.M.M.S., Anantharaman, N. (2014). Continuous flow reactive distilla-
  49. tion process for biodiesel production using waste egg shells as heterogeneous catalysts. RSC Advances. 4: 54109-54114
  50. Xie, J., Zheng, X., Xiao A.D.Z., Zhang J. (2008). Biont shell catalyst for biodiesel pro-duction. Green Chemistry. 11: 355-364
  51. Konwar, L.J., Arvel, P.M., Salminen, E., Kumar, N., Thakur, A.J., Mikkola, J.P., Deka, D. (2015). Towards carbon efficient biorefin-ing: Multifunctional mesoporoussolid acids obtained from biodiesel production wastes for biomass conversion. Applied Catalysis B: En-vironmental. 176: 20-35
  52. Konwar, L.J., Das, R., Thakur, A.J., Salmi-nen, E., Arvela, P.M., Kumar, N., Mikkola, J.P., Deka, D. (2014). Biodiesel production from acid oils using sulfonated carbon cata-lyst derived from oil-cake waste, Journal of Molecular Catalysis A: Chemical 388-389: 167-176
  53. Yang, L., Zhang, A., Zheng, X. (2009). Shrimp Shell Catalyst for Biodiesel Production. En-ergy & Fuels. 23: 3859-3865
  54. Shang, Y., Jiang, Y., Gao, Y. (2015). One-step Synthesis of Peanut Shell- derived Solid Acid for Biodiesel Production. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. 37: 1039-1045
  55. Turkay, S., Sevil, O,Y., Tolay, M., Serdar, E. (2006). Method of producing an adsorbent from rice hull ash. Patent US 20060269464 A1
  56. Sarin, R., Arora, A.K., Puri, S.K., Prakash, S., Ranjan, R., Christopher, J., Tuli, D.K., Mal-hotra, R.K., Kumar, A. (2010). Novel catalyst composition for biodiesel production and proc-ess for preparing the same. Patent WO 2010113011 A2
  57. Liu, J., Liu, H., Guo, X., Feng, Y., Hu, Z., Zhao, X., Wang, T., Li, X., Jingyu, J.G.L., Hui, L., Xuna, G., Yuan, F., Zhong, H., Xin, Z., Tao, W., Xueli, L., Junli, G. (2012). Catalyst used for preparation of biodiesel by using swill cooked dirty oil. Patent CN101985104 (B)
  58. Fang, L., Kerui, H., Huani, C., Jinlei, Z.(2013). Method for producing biodiesel through catalysis on municipal and industrial waste. Patent CN103396842 (A)
  59. Konwar, L.J., Mäki-Arvela, P., Salminen, E., Kumar, N., Thakur, A..J., Mikkola, J.P., Deka, D. (2015). Towards carbon efficient bio-refining: Multifunctional mesoporous solid ac-ids obtained from biodiesel production wastes for biomass conversion. Applied Catalysis B: Environmnetal, 176-177: 20-35

Last update:

No citation recorded.

Last update:

No citation recorded.