skip to main content

The Optical Properties and Photo catalytic Activity of ZnS-TiO2/Graphite Under Ultra Violet and Visible Light Radiation

*Fitria Rahmawati  -  Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta, Indonesia
Rini Wulandari  -  Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta, Indonesia
Irvinna Mutiara Murni  -  Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta, Indonesia
Mudjijono Mudjijono  -  Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta, Indonesia

Citation Format:
Cover Image
Abstract

This paper discuss research about the optical properties and photo catalytic activity of TiO2 film on graphite substrate and its modification with ZnS. The optical properties investigated are the light response at various light wavelength and the gap energy (Eg). Meanwhile, the photocatalytic activity was studied from isopropanol degradation to determine the Quantum Yield, QY and kinetics of reaction. The results show that the TiO2 layer is consisted of rutile and anatase phases. Meanwhile, the ZnS peaks are at 2θ of 27.91o and 54.58o. The gap energy of TiO2/G consist of two band gap representing the band gap of rutile and anatase. The ZnS deposition shifted the band gap into single gap of 3.40 eV which is in between the gap energy of single TiO2 and single ZnS. The isopropanol degradation with TiO2/G photocatalyst under visible light radiation did not produce any new peaks representing product. Meanwhile, the photocatalytic process under 380 nm light produce new peaks representing the electronic transition of acetone. The isopropanol degradation with ZnS-TiO2/Graphite produced new peaks that indicates the photocataytic activity of ZnS-TiO2/Graphite whether under UV or visible light radiation. The siginificant role of ZnS also proven by the increase of QY values and the increase of rate constant, k. © 2015 BCREC UNDIP. All rights reserved

Received: 31st May 2015; Revised: 6th August 2015; Accepted: 17th Octoberber 2015

How to Cite: Rahmawati, F., Wulandari, R., Murni, I.M., Moedjijono, M. (2015). The Optical Properties and Photo catalytic Activity of ZnS-TiO2/Graphite Under Ultra Violet and Visible Light Radiation. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (3): 294-303. (doi:10.9767/bcrec.10.3.8598.294-303)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.3.8598.294-303

Fulltext View|Download
Keywords: ZnS; TiO2; composite; chemical bath deposition; photo catalytic activity
Funding: Hibah Mandatory 2015, PNBP Universitas Sebelas Maret

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Wang, X.F., Zhang, W. (2014). Chemical depositing of CdS/ZnS composition nanostructure modified TiO2 thin film. Chalcogenide Letters, 11(8): 389-395
  2. Rahmawati, F., Wahyuningsih, S., Irianti, D. (2014). The Photo catalytic Activity of SiO2-TiO2/Graphite and Its Composite with Silver and Silver Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1): 45-52. DOI: 10.9767/bcrec.9.1.5374.45-52
  3. Stengl, V., Bakrdjieva, S., Murafa, N., Houskova, V., Lang, K. (2008). Visible light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials, 110: 370-378
  4. Hwang, Y.J., Hahn, C., Liu, B., Yang, P. (2012) Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano, 6:5060-5069
  5. Kim, D., Sakimoto, K.K., Hong, D., Yang, P. (2015) Artificial photosynthesis for sustainable fuel and chemical production, Angewante Chemistry International Edition, 54:2-10
  6. Tambwekar, S.V., Venugopal, D., Subrahmanyam, M. (1999). H2 production of (CdS-ZnS)-TiO2 supported photocatalytic system. International Journal of Hydrogen Energy, 24 : 957–963
  7. Ishibashi, K., Fujishima, A., Watanabe, T., Hashimoto, K. (2000). Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 134: 139–142
  8. Xiaodan, Y., Qingyin, W., Shicheng, J., Yihang, G. (2006). Nanoscale ZnS/TiO2 composites: preparation, characterization, and visible-light photocatalytic activity. Material Characterization, 57: 333-341
  9. Stengl,V., Bakardjieva, S., Murafa, N., Houskova, V., Lang, K.(2008). Visible light photocatalytic activity of TiO2/ZnS nanocomposite prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials, 110 : 370-378
  10. Lee, S.S., Byun, K-T., Park, J.P., Kim, S.K., Lee, J.Ch., Chang, S-K., Kwak, H.-Y., Shim, I-W.(2008). Homogeneous ZnS-coating onto TiO2 nanoparticles by a simple one pot sonochemical method. Chemical Engineering Journal, 139:194-197
  11. Xiaodan, Y.,Qingyin, W., Shicheng, J., Yihang, G.(2006). Nanoscale ZnS/TiO2 composites: preparation, characterization, and visible-light photocatalytic activity. Material Characterization, 57:333-341
  12. Franco, A., Neves, M.C., Ribeiro Carrott, M.M.L., Mendon, M.H., Pereira, M.I., Monteiro, O.C. (2009). Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. Journal of Hazardous Materials ,161 : 545–550
  13. Weizhen, H., Park, S-.J., Shin, D-.H., Yoon, S-.J., Wu, Y., Qiu, J., Hwang, Y-.H., Kim, H-.K., Kim, B. (2011). Effect of Annealing Ti Foil on The Structural Properties of Anodic TiO2 Nanotube Arrays. Journal of the Korean Physical Society, 58(3) 575-579
  14. Rahmawati, F., Kusumaningsih, T., Hapsari, A.M., Hastuti. A. (2010). Ag and Cu loaded on TiO2/graphite as a catalyst for E. Coli-contaminated water disinfection. Chemical Papers, 64:557-565
  15. Park, Y., Kefayat, U., Vikram , N., Ghosh, T., Oh, W. C., Cho, K. Y. (2014) Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light. Bulletin of Material Science, 36 (5): 869–876
  16. Nakada, T., Masashi, H., Hayashi, E. (2003). Band offset of high efficiency CBD-ZnS CIGS thin film solar cells. Thin Solid Films, 431 –432: 242–248
  17. Valencia, S., Marín, J. M., Restrepo, G. (2010). Study of the Band Gap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Material Science Journal, 4: 9-14
  18. Hafner, B. (14 October 2015) Energy Dispersive Spectroscopy on the SEM: a primer. Citing internet sources http://www.charfac.umn.edu/instruments/eds_on_sem_primer.pdf
  19. Rahmawati, F., Wulandari, R., Murni, I.M., Mudjijono. (2015) Optical properties and photo catalytic activity of CdS-TiO2 /Graphite composite. Ahead Of Print in Science and Engineering of Composite Materials. Doi 10.1515/secm-2015-0162
  20. Kumar, S. (2006). Organic Chemistry: Spectroscopy of organic compounds, Department of Chemistry, Guru Nanak Dev University, Amritsar, pp. 1-36
  21. Xu, W., Raftery, D. (2001). Photocatalytic Oxidation of 2-Propanol on TiO2Powder and TiO2 Monolayer Catalysts Studied by Solid-State NMR. Journal of Physical Chemistry B, 105: 4343-4349

Last update:

No citation recorded.

Last update:

No citation recorded.