Modified Zeolite with Transition Metals Cu and Fe for Removal of Methylene Blue from Aqueous Medium: Mass Spectrometry Study

*Joao Henrique Lopes  -  Institute of Chemistry - University of Campinas, P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil., Brazil
Francisco Guilherme Nogueira  -  Department of Chemistry - Federal University of Lavras, P.O. Box 3037, CEP 37200-000, Lavras, Minas Gerais, Brazil., Brazil
Maraisa Gonçalves  -  Department of Chemistry - Federal University of Lavras, P.O. Box 3037, CEP 37200-000, Lavras, Minas Gerais, Brazil., Brazil
Luiz Carlos Oliveira  -  Department of Chemistry - Federal University of Lavras, P.O. Box 3037, CEP 37200-000, Lavras, Minas Gerais, Brazil., Brazil
Received: 4 Jun 2015; Published: 30 Dec 2015.
Open Access
Citation Format:
Cover Image

Textile industries are one of the main sources of water pollution. Wastewater containing dyes present a serious environmental problem because of its high toxicity and possible accumulation in the environ- ment. In this work were explored the characteristics of removal of methylene blue dye employing zeo- lites modified with transition metals (Cu, Fe). The zeolites with iron or copper were prepared by using NaY and Naβ zeolites as precursors, replacing part of ion sodium for copper or iron ions through the ion exchange method. All materials were characterized by several analytical techniques, in order to gain information about the structure and catalytic activity. Modified zeolites showed a remarkable ac- tivity in H2O2 decomposition and in the discoloration an organic dye in aqueous medium. ESI-MS stud- ies of the methylene blue oxidation showed that the oxidation of the dye occurs via a Fenton type sys- tem in which *OH radicals are formed in situ and added to the ring structure of the organic substrate. In addition, modification of the zeolite with transition metal proved to be an interesting pathway to produce efficient catalysts for the oxidation of organic molecules, i.e. dyes in aqueous media. © 2015 BCREC UNDIP. All rights reserved

Received: 4th June 2015; Revised: 29th July 2015; Accepted: 29th July 2015

How to Cite: Lopes, J.H., Nogueira, F.G.E, Gonçalves, M., Oliveira, L.C. (2015). Modified Zeolite with Transition Metals Cu and Fe for Removal of Methylene Blue from Aqueous Medium: Mass Spectrometry Study. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (3): 237-248. (doi:10.9767/bcrec.10.3.8624.237-248)


Keywords: Y zeolite; β zeolite; ion exchange; removal of organic contaminant; oxidation reactions

Article Metrics:

  1. Nigam P., Banat I. M., Singh D., Marchant R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31: 435-442
  2. Mishra M., Jain S. K. (2011). Properties and applications of zeolites: A Review. Proceedings of the National Academy of Sciences India Section B-Biological Sciences, 81: 250-259
  3. Hao L., Wang R., Fang K., Liu J., Sun Y., Men Y. (2015). The synchronized wash-off of reactive-dyed cotton fabrics and decolorization of resultant wastewater using titanium dioxide nano-fibers. Carbohydrate Polymers, 125: 367-375
  4. Chen J., Wang X., Liu X., Huang J., Xie Z. (2015). Removal of Dye Wastewater COD by Sludge Based Activated Carbon. Journal of Coastal Research: 1-3
  5. Choudary N. V., Newalkar B. L. (2011). Use of zeolites in petroleum refining and petrochemical processes: recent advances. Journal of Porous Materials, 18: 685-692
  6. Oliveira L. C. A., Goncalves M., Guerreiro M. C., Ramalho T. C., Fabris J. D., Pereira M. C., et al. (2007). A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis a-General, 316: 117-124
  7. Aboul-Gheit A. K., Awadallah A. E., Aboul-Enein A. A., Mahmoud A. L. H. (2011). Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions. Fuel, 90: 3040-3046
  8. Forgacs E., Cserhti T., Oros G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30: 953-971
  9. Wang X., Wang P., Ma J., Liu H., Ning P. (2015). Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration. Applied Surface Science, 345: 57-66
  10. Gusmao K. A. G., Gurgel L. V. A., Melo T. M. S., Gil L. F. (2012). Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions - Kinetic and equilibrium studies. Dyes and Pigments, 92: 967-974
  11. Gupta V. K., Carrott P. J. M., Carrott M. M. L. R., Suhas. (2009). Low-Cost Adsorbents: Growing Approach to Wastewater Treatment Review. Critical Reviews in Environmental Science and Technology, 39: 783-842
  12. Teketel S., Skistad W., Benard S., Olsbye U., Lillerud K. P., Beato P., et al. (2012). Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. Acs Catalysis, 2: 26-37
  13. Erten-Kaya Y., Cakicioglu-Ozkan F. (2012). Effect of ultrasound on the kinetics of cation exchange in NaX zeolite. Ultrasonics Sonochemistry, 19: 701-706
  14. Oliveira L. C. A., Rios R. V. R. A., Fabris J. D., Sapag K., Garg V. K., Lago R. M. (2003). Clay‚ iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 22: 169-177
  15. Ong S. A., Toorisaka E., Hirata M., Hano T. (2005). Treatment of azo dye Orange II in aerobic and anaerobic-SBR systems. Process Biochemistry, 40: 2907-2914
  16. Ding L. H., Zheng Y. (2007). Nanocrystalline zeolite beta: The effect of template agent on crystal size. Materials Research Bulletin, 42: 584-590
  17. Yang R. T., Tharappiwattananon N., Long R. Q. (1998). Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen. Applied Catalysis B-Environmental, 19: 289-304
  18. Oliveira L. C. A., Petkowicz D. I., Smaniotto A., Pergher S. B. C. (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Research, 38: 3699-3704
  19. Mignoni M. L., Detoni C., Pergher S. B. C. (2007). Estudo da síntese da zeólita ZSM-5 a partir de argilas naturais. Química Nova, 30: 45-48
  20. Baur W. H. (1964). On the cation and water positions in faujasite. Am Miner, 49: 697-704
  21. Alberti A., Cruciani G., Galli E., Merlino S., Millini R., Quartieri S., et al. (2002). Crystal structure of tetragonal and monoclinic polytypes of tschernichite, the natural counterpart of synthetic zeolite beta. Journal of Physical Chemistry B, 106: 10277-10284
  22. Treacy M. M. J., Higgins J. B., vonBallmoos R. (1996). Collection of simulated XRD powder patterns for zeolites. Zeolites, 16: 327-&
  23. Li B. X., Wang X. F., Xia D. D., Chu Q. X., Liu X. Y., Lu F. G., et al. (2011). One-step green synthesis of cuprous oxide crystals with truncated octahedra shapes via a high pressure flux approach. Journal of Solid State Chemistry, 184: 2097-2102
  24. Maxwell I. E., Boer J. J. D. (1975). Crystal-Structures of Hydrated and Dehydrated Divalent Copper-Exchanged Faujasite. Journal of Physical Chemistry, 79: 1874-1879
  25. Iizumi M., Koetzle T. F., Shirane G., Chikazumi S., Matsui M., Todo S. (1982). Structure of Magnetite (Fe3o4) Below the Verwey Transition-Temperature. Acta Crystallographica Section B-Structural Science, 38: 2121-2133
  26. Corma A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95: 559-614
  27. Nogueira F. G. E., Lopes J. H., Silva A. C., Lago R. M., Fabris J. D., Oliveira L. C. A. (2011). Catalysts based on clay and iron oxide for oxidation of toluene. Applied Clay Science, 51: 385-389
  28. Pena Y. P. d., Rondon W. (2013). Linde Type a Zeolite and Type Y Faujasite as a Solid-Phase for Lead, Cadmium, Nickel and Cobalt Preconcentration and Determination Using a Flow Injection System Coupled to Flame Atomic Absorption Spectrometry. American Journal of Analytical Chemistry, Vol.04No.08: 11
  29. A. T., S. R., B. P. G., Shankar K. R. S., M. R., K. M. (2008). Trace Element Studies and Origin of Magnetite Quartzite Iron Formations of Northern District of Tamil Nadu, India. Asian Journal of Applied Sciences, 1: 327-333
  30. Padil V. V. T., Černík M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8: 889-898
  31. Urquieta-González E. A., Martins L., Peguin R. P. S., Batista M. S. (2002). Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5 Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure. Materials Research, 5: 321-327
  32. Bulanek R., Wichterlova B., Sobalik Z., Tichy J. (2001). Reducibility and oxidation activity of Cu ions in zeolites - Effect of Cu ion coordination and zeolite framework composition. Applied Catalysis B-Environmental, 31: 13-25
  33. Rac V., Rakic V., Gajinov S., Dondur V., Auroux A. (2006). Room-temperature interaction of n-hexane with ZSM-5 zeolites - Microcalorimetric and temperature-programmed desorption studies. Journal of Thermal Analysis and Calorimetry, 84: 239-245
  34. Yang Y. X., Burke N., Zhang J. F., Huang S. L., Lim S., Zhu Y. G. (2014). Influence of charge compensating cations on propane adsorption in X zeolites: experimental measurement and mathematical modeling. Rsc Advances, 4: 7279-7287
  35. Stanic T., Dakovic A., Zivanovic A., Tomasevic-Canovic M., Dondur V., Milicevic S. (2009). Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environmental Chemistry Letters, 7: 161-166
  36. Estermann M., Mccusker L. B., Baerlocher C., Merrouche A., Kessler H. (1991). A Synthetic Gallophosphate Molecular-Sieve with a 20-Tetrahedral-Atom Pore Opening. Nature, 352: 320-323

Last update: 2021-03-05 04:34:18

No citation recorded.

Last update: 2021-03-05 04:34:19

  1. Application of fly ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: Kinetic, equilibrium and mechanism analysis

    Tian Q.. Water Science and Technology, 79 (11), 2019. doi: 10.2166/wst.2019.209
  2. Influence of salt on nanozeolite-Y particles size synthesized under organic template-free condition

    Radman H.. Microporous and Mesoporous Materials, 127 , 2019. doi: 10.1016/j.micromeso.2019.03.015
  3. Modification, characterization, and catalytic application of mesolite for one pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones

    Pawar G.. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1), 2017. doi: 10.9767/bcrec.12.1.655.32-40
  4. Catalytic oxidation of methylene blue by use of natural zeolite-based silver and magnetite nanocomposites

    Kuntubek A.. Processes, 8 (4), 2020. doi: 10.3390/PR8040471
  5. Synthesis and catalytic performance of zeolite-Y supported on silicon carbide in n-heptane cracking

    Dabbawala A.A.. Applied Catalysis A: General, 127 , 2020. doi: 10.1016/j.apcata.2020.117866
  6. Synthesis and Characterization of Cu Decorated Zeolite A@Void@Et-PMO Nanocomposites for Removal of Methylene Blue by a Heterogeneous Fenton Reaction

    Li X.. Chemical Research in Chinese Universities, 35 (3), 2019. doi: 10.1007/s40242-019-8362-8
  7. Effect of copper on textural and acidic properties of hierarchical nanocrystalline ZSM-5

    Farsana O.P.. Asia-Pacific Journal of Chemical Engineering, 15 (5), 2020. doi: 10.1002/apj.2547
  8. Zn/HY-Zeolite as a Catalyst for Upgrading Iraqi Heavy Crude Oil Using Aquathermolysis Method

    Saeed A.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2019. doi: 10.1088/1757-899X/579/1/012010